M.S. Blizorukova, V.I. Maksimov. On modeling a solution of systems with constant delay using controlled models ... P. 39-49

The problem of modeling a solution is studied for a nonlinear system of differential equations with constant delay, inexactly known right-hand side, and inaccurately given initial state. The case is considered when the right side of the system is a nonsmooth (it is only known that it is Lebesgue measurable) unbounded function (belonging to the space of square integrable functions in the Euclidean norm). An algorithm for solving this system that is stable to information noise and calculation errors is constructed. The algorithm is based on the concepts of feedback control theory. An estimate of the convergence rate of the algorithm is established. The possibility of using the algorithm to find an approximate solution to a system of ordinary differential equations is mentioned.

Keywords: system with delay, approximate solution

Received March 20, 2024

Revised April 11, 2024

Accepted April 15, 2024

Funding Agency: The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2024-1377).

Marina Sergeevna Blizorukova, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: msb@imm.uran.ru

Vyacheslav Ivanovich Maksimov, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: maksimov@imm.uran.ru

REFERENCES

1.   Kryazhimskii A.V., Osipov Yu.S. Dynamic solution of operator equations. Dokl. Akad. Nauk SSSR, 1983, vol. 269, no. 3, pp. 552–556 (in Russian).

2.   Kryazhimskii A.V., Osipov Yu.S. Modeling of parameters of a dynamic system. In the book Problems of control and modeling in dynamic systems, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1984, pp. 47–68 (in Russian).

3.   Kryazhimskii A.V., Maksimov V.I., Osipov Yu.S. On positional simulation in dynamic systems. J. Appl. Math. Mech., 1983, vol. 47, no. 6, pp. 709–714. doi: 10.1016/0021-8928(83)90103-X

4.   Kryazhimskii A.V., Osipov Yu.S. Best approximation of the differentiation operator in a class of nonanticipating operators. Math. Notes, 1985, vol. 37, no. 2, pp. 109–114. doi: 10.1007/BF01156754

5.   Kryazhimskii A.V., Osipov Yu.S. Method of Lyapunov functions in the problem of motion modeling. In the book Motion stability, Novosibirsk, Nauka, 1985, pp. 53–56 (in Russian).

6.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems, NY, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . This book is substantially revised version of the monograph: Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.

7.   Maksimov V.I. Positional modeling of controls and initial functions for Volterra systems. Differ. Uravn., 1987, vol. 23, no. 4, pp. 618–629 (in Russian).

8.   Maksimov V.I. A numerical method for finding approximate solutions of parabolic variational inequalities. Differ. Equ., 1988, vol. 24, no. 11, pp. 1344–1351.

9.   Maksimov V.I. The method of extremal shift in control problems for evolution variational inequalities under uncertainty. Evol. Equ. Control The., 2022, vol. 11, no. 4, pp. 1373–1398. doi: 10.3934/eect.2021048

10.   Maksimov V.I. Existence of strong solutions of differential equations in a Hilbert space. Differ. Equ., 1988, vol. 24, no. 3, pp. 277–284.

11.   Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions, London, Gordon and Breach, 1995, 625 p. ISBN: 978-2881249440 .

12.   Banks H.T. Approximation of nonlinear functional–differential systems. J. Optim. Theory Appl., 1979, vol. 29, pp. 383–408. doi: 10.1007/BF00933142

13.   Kappel F., Schappaher W. Non-linear functional–differential and abstract integral equations. Proc. Roy. Soc., Edinburgh, 1979, no. 1–2, pp. 71–91. doi: 10.1017/S0308210500016966

14.   Jackiewicz Z. The numerical solutions of Volterra functional–differential equations of neutral type. SIAM J. Numer. Anal., 1981, vol. 18, no. 4, pp. 615–626. doi: 10.1137/0718040

15.   Ito K., Kappel F. Approximation of infinite delay and Volterra type equations. Numer. Math., 1989, vol. 54, no. 4, pp. 405–444. doi: 10.1007/BF01396322

16.   Lasiecka I., Manitius A. Differentiability and convergence rates of approximating semigroups for retarded functional differential equations. SIAM J. Numer. Anal., 1988, vol. 25, no. 4, pp. 883–907. doi: 10.1137/0725050

17.   Maksimov V.I. The tracking of the trajectory of a dynamical system. J. Appl. Math. Mech., 2011, vol. 75, no. 6, pp. 667-674. doi: 10.1016/j.jappmathmech.2012.01.007

Cite this article as: M.S. Blizorukova, V.I. Maksimov. On modeling a solution of systems with constant delay using controlled models. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 2, pp. 39–49. Proceedings of the Steklov Institute of Mathematics, 2024, Vol. 325, Suppl. 1, pp. S48–S57.