In the paper, a functional (sheaf) representation of a $pq$-Baer $*$-semiring with involution is obtained. For a $*$-semiring, the notions of central and central prime ideals are introduced. The set ${\rm Sp}\,S$ of all central prime ideals of a $pq$-Baer $*$-semiring with the Zariski topology becomes a zero-dimensional compact Hausdorff space. The sheaf $(\mathbb{L}(S), {\rm Sp}\,S)$ of $*$-semirings is constructed on ${\rm Sp}\,S$ as a basis space. It is proved that an arbitrary $pq$-Baer $*$-semiring is $*$-isomorphic to the $*$-semiring of all global sections of the sheaf $\mathbb{L}(S)$. Open questions are formulated.
Keywords: semiring with involution, $pq$-Baer $*$-semiring, sheaf representation
Received October 27, 2023
Revised November 21, 2023
Accepted December 4, 2023
Nikita Sergeevich Protasov, doctoral student, Pitirim Sorokin Syktyvkar State University, Syktyvkar, 167001 Russia, e-mail: protasovnekit@gmail.com
Vasiliy Vladimirovich Chermnykh, Dr. Phys.-Math. Sci., Prof., Pitirim Sorokin Syktyvkar State University, Syktyvkar, 167001 Russia, e-mail: vv146@mail.ru
REFERENCES
1. Salavova K. Kol’tsa s involutsiey [Rings with involution]. Dissertation Cand. Sci. (Phys.–Math.), Moscow, 1978 (in Russian).
2. Pierce R.S. Modules over commutative regular rings. Mem. Amer. Math. Soc., 1967, vol. 70, pp. 1–112. doi: 10.1090/memo/0070
3. Tyukavkin D.V. An analogue of Pierce sheaves for rings with involution. Russian Math. Surveys, 1983, vol. 38, no. 5, pp. 164–165. doi: 10.1070/RM1983v038n05ABEH003520
4. Markov R.V. Pierce sheaf for semirings with involution. Russian Math. (Iz. VUZ), 2014, vol. 58, no. 4, pp. 14–19. doi: 10.3103/S1066369X14040033
5. Lambek J. On representation of modules by sheaves of factor modules. Can. Math. Bull., 1971, vol. 14, no. 3, pp. 359–368. doi: 10.4153/CMB-1971-065-1
6. Chermnykh V.V. Functional representations of semirings. J. Math. Sci., 2012, vol. 187, no. 2, pp. 187–267. doi: 10.1007/s10958-012-1062-2
7. Kaplansky I. Rings of operators. NY, Amsterdam: W.A.Benjamin, Inc., 1968, 151 p. ISBN: 9780805352085
8. Clark W.E. Twisted matrix units semigroup algebras. Duke Math. J., 1967, vol. 34, no. 3, pp. 417–423. doi: 10.1215/S0012-7094-67-03446-1
9. Birkenmeier G.F., Kim J.Y., Park J.K. Principally quasi-Baer rings. Comm. Algebra, 2001, vol. 29, no. 2, pp. 639–660. doi: 10.1081/AGB-100001530
10. Markov R.V., Chermnykh V.V. Semirings close to regular and their Pierce stalks. Tr. Inst. Mat. Mekh. UrO RAN, 2015, vol. 21, no. 3, pp. 213–221 (in Russian).
11. Babenko M.V., Chermnykh V.V. Pierce stalks of semirings of skew polynomials. Tr. Inst. Mat. Mekh. UrO RAN, 2021, vol. 27, no. 4, pp. 48–60 (in Russian). doi: 10.21538/0134-4889-2021-27-4-48-60
12. Golan J.S. Semirings and their applications. Dordrecht: Kluwer Acad. Publ., 1999. 382 p. doi: 10.1007/978-94-015-9333-5
13. Hofmann K.H. Representations of algebras by continuous sections. Bulletin American Math. Soc., 1972, vol. 78, no. 3, pp. 291–374. doi: 10.1090/s0002-9904-1972-12899-4
14. Davey B.A. Sheaf spaces and sheaves of universal algebras. Math. Z., 1973, vol. 134, no. 4, pp. 275–290. doi: 10.1007/BF01214692
15. Khairnar A., Waphare B.N. A sheaf representation of principally quasi-Baer $*$-rings. Algebras and Representation Theory, 2019, vol. 22, no. 1, pp. 79–97. doi: 10.1007/s10468-017-9758-0
16. Birkenmeier G.F., Kim J.Y., Park J.K. A sheaf representation of quasi-Baer rings. J.Pure Appl. Algebra, 2000, vol. 146, no. 3, pp. 209–223. doi: 10.1016/S0022-4049(99)00164-4
17. Ahmadi M., Golestani N., Moussavi A. Generalized quasi-Baer $*$-rings and Banach $*$-algebras. Comm. Algebra, 2020, vol. 48, no. 5, pp. 2207–2247. doi: 10.1080/00927872.2019.1710841
Cite this article as: N.S. Protasov, V.V. Chermnykh. On the sheaf representation of a $pq$-Baer $*$-semiring with involution. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 1, pp. 190–202.