The finite quasifields have been studied together with projective translation planes for more than a century. The identification of structural features and anomalous properties is an important step in solving the classification problem of finite quasifields. The article solves the structural problems for finite Hall quasifields. These are quasifields two-dimensional over the center such that all non-central elements are the roots of a unique quadratic equation. The automorphism group acts transitively on non-central elements. All Hall quasifields of the same order coordinatize one isomorphic translation plane, which is the Hall plane. The spread set method allows to present the multiplication rule as a linear transformation. The method is used to describe subfields, sub-quasifields, spectra, and automorphisms. An algorithm to calculate the number of pairwise non-isomorphic Hall quasifields of the same order is given. The covering and primitivity theorem by M. Cordero and V. Jha (2009) is clarified, with the primitive Hall quasifields counter-examples. The quasifields of order 16 covered by subfields of order 4 not contained in any Hall quasifield are presented. The examples also raise the questions for further investigation.
Keywords: quasifield, Hall quasifield, spread set, spectrum, automorphism, right-primitive quasifield
Received August 14, 2023
Revised November 15, 2023
Accepted November 20, 2023
Funding Agency: This work was supported by the Krasnoyarsk Mathematical Center, which is financed by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2023-936).
Olga Vadimovna Kravtsova, Dr. Phys.-Math. Sci., Prof., Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: ol71@bk.ru
Valeria Sergeevna Loginova, graduate student, Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: yui5432188@gmail.com
REFERENCES
1. Dickson L.E. Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc., 1906, vol. 7, no. 3, pp. 370–390. doi: 10.1090/S0002-9947-1906-1500755-5
2. Veblen O., Maclagan–Wedderburn J.H. Non-Desarguesian and Non-Pascalian geometries. Trans. Amer. Math. Soc., 1907, vol. 8, no. 3, pp. 379–388. doi: 10.1090/S0002-9947-1907-1500792-1
3. Hall M. The theory of groups, NY, Macmillan, 1959, 434 p. Translated to Russian under the title Teoriya grupp, Moscow, Inostr. Liter. Publ., 1962, 467 p.
4. Hughes D.R., Piper F.C. Projective planes. NY Inc.: Springer-Verlag, 1973, 292 p.
5. Kurosh A.G. Lectures on general algebra. International Ser. Monographs on Pure and Applied Math., vol. 70, NY Inc.: Elsevier Ltd., 1965, 374 p. doi: 10.1016/C2013-0-01775-6 . Original Russian text published in Kurosh A.G. Lektsii po obshchei algebre, Moscow: Fizmatgiz Publ., 1962, 396 p.
6. Dickson L.E. On finite algebras. Nachr. Akad. Wiss., Göttingen, Math.-Phys, 1905, Kl. II, pp. 358–393. Available at: http://eudml.org/doc/58621 .
7. Zassenhaus H. Uber endliche Fastkörper. Abh. Math. Sem. Hamburg, 1936, vol. 11, pp. 187–220. doi: 10.1007/BF02940723
8. Johnson N.L., Jha V., Biliotti M. Handbook of finite translation planes. London; NY: Chapman Hall/CRC, 2007, 888 p. ISBN: 9781420011142 .
9. Hall M., Jr. Projective planes. Trans. Amer. Math. Soc., 1943, vol. 54, pp. 229–277. doi: 10.1090/S0002-9947-1943-0008892-4
10. Biliotti M., Jha V., Johnson N.L. Foundations of translation planes. NY, Basel: Marcel Dekker Inc., 2001, 542 p. ISBN: 9780824706098 .
11. Nesbitt–Stobert S.B., Garner C.W.L. A direct proof that all Hall planes of the same finite order are isomorphic. Riv. Mat. Univ. Parma., 1986, vol. 12, no. 4, pp. 241–247.
12. Levchuk V.M., Kravtsova O.V. Problems on structure of finite quasifields and projective translation planes. Lobachevskii J. Math., 2017, vol. 38, no. 4, pp. 688–698. doi: 10.1134/S1995080217040138
13. Kravtsova O.V., Skok D.S. The spread set method for the construction of finite quasifields. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022. Vol. 28, no. 1. P. 164–181. doi: 10.21538/0134-4889-2022-28-1-164-181
14. Mäurer H. Die affine Projektivitätengruppe der Hallebenen [The affine group of projectivities of the Hall planes]. Aequationes Math., 1987, vol. 32, pp. 271–273.
15. Wene G.P. On the multiplicative structure of finite division rings. Aequationes Math., 1991, vol. 41, pp. 222–233. doi: 10.1007/BF02227457
16. Hentzel I.R., Rúa I.F. Primitivity of finite semifields with 64 and 81 elements. Internat. J. Algebra and Computation, 2007, vol. 17, no. 7. P. 1411–1429. doi: 10.1142/S0218196707004220
17. Cordero M., Jha V. On the multiplicative structure of quasifields and semifields: cyclic and acyclic loops. Note di Matematica, 2009, vol. 29, no. 1, pp. 45–59. doi: 10.1285/i15900932v29n1supplp45
18. Nagy G.P. Doubly transitive sete of even permutations. Bul. Acad. tiine. Repub. Mold. Mat., 2016, no. 1, pp. 78–82.
19. Hiramine Y. A generalization of Hall quasifields. Osaka J. Math., 1985, vol. 22, pp. 61–69. doi: 10.18910/7798
20. Dempwolff U., Reifart A. The Classification of the translation planes of order 16. Universität Stuttgart / Fachbereich Mathematik: Preprint (Vol. 42). 1982.
21. Levchuk V.M., Shtukkert P.K. Problems on structure for quasifields of orders 16 and 32. J. of Siberian Federal University. Ser. Mathematics & Physics, 2014, vol. 7, no. 3, pp. 362–372.
Cite this article as: O.V. Kravtsova, V.S. Loginova. Questions of the structure of finite Hall quasifields. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 1, pp. 128–141.