W. Guo, N.V. Maslova, D.O. Revin. Nonpronormal subgroups of odd index in finite simple linear and unitary groups ... P. 70-79

A subgroup $H$ of a group $G$ is pronormal  if, for each $g \in G$, the subgroups $H$ and $H^g$ are conjugate in $\langle H, H^g \rangle$. Most of finite simple groups possess the following property $(*)$: each subgroup of odd index is pronormal in the group. The conjecture that all finite simple groups possess the property $(*)$ was established in 2012 in a paper by E.P. Vdovin and the third author based on the analysis of the proof that Hall subgroups are pronormal in finite simple groups. However, the conjecture was disproved in 2016 by A.S. Kondrat'ev together with the second and third authors. In a series of papers by Kondrat'ev and the authors published from 2015 to 2020, the finite simple groups with the property $(*)$ except finite simple linear and unitary groups with some constraints on natural arithmetic parameters were classified. In this paper we construct series of examples of nonpronormal subgroups of odd indices in finite simple linear and unitary groups over a field of odd characteristic, thereby making a step towards completing the classification of finite simple groups with the property $(*)$.

Keywords: finite group, simple group, linear simple group, unitary simple group, pronormal subgroup, odd index

Received December 5, 2023

Revised January 8, 2024

Accepted January 15, 2024

Funding Agency: This work was supported by the Russian Science Foundation (project no. 19-71-10067, Theorem 1), the National Natural Science Foundation of China (project nos. 12171126 and 12371021), and within a state contract of the Sobolev Institute of Mathematics (FWNF-2022-0002).

Wenbin Guo, Dr. Phys.-Math. Sci., Prof., School of Mathematics and Statistics, Hainan University, Haikou, Hainan 570225, P. R. China, Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China, e-mail: wbguo@ustc.edu.cn

Natalia Vladimirovna Maslova, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, Ural Federal University, Yekaterinburg, 620002, Russia e-mail: butterson@mail.ru

Danila Olegovich Revin, Dr. Phys.-Math. Sci., Prof., Sobolev Institute of Mathematics of the Siberia Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia; Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: revin@math.nsc.ru

REFERENCES

1.   Hall P. Phillip Hall’s lecture notes on group theory — Part 6. Cambridge: University of Cambridge, 1951–1967. Available at: http://omeka.wustl.edu/omeka/items/show/10788 .

2.   Babai L. Isomorphism Problem for a Class of Point-Symmetric Structures. Acta Math. Acad. Sci. Hungar, 1977, vol. 29, p. 329–336. doi: 10.1007/BF01895854

3.   Palfy P.P. Isomorphism Problem for Relational Structures with a Cyclic Automorphism. Europ. J. Combinatorics, 1987, vol. 8, no. 1, pp. 35–43. doi: 10.1016/S0195-6698(87)80018-5

4.   Praeger Ch.E. On transitive permutation groups with a subgroup satisfying a certain conjugacy condition. J. Austral. Math. Soc., 1984, vol. 36, no. 1, p. 69–86. doi: 10.1017/S1446788700027348

5.   Guo, W., Maslova, N.V., Revin, D.O. On the pronormality of subgroups of odd index in some extensions of finite groups. Sib. Math. J., 2018, vol. 59, no., 4, p. 610–622. doi: 10.1134/S0037446618040043

6.   de Giovanni F., Trombetti M. Pronormality in group theory. Adv. Group Theory Appl., 2020, vol. 9, pp. 123–149. doi: 10.32037/agta-2020-005

7.   Brescia M., Ferrara M., Trombetti M. Groups whose subgroups are either abelian or pronormal. Kyoto J. Math., 2023, vol. 63, no. 3, pp. 471–500. doi: 10.1215/21562261-10607307

8.   Brescia M., Trombetti M. Locally finite simple groups whose non-Abelian subgroups are pronormal. Comm. Algebra, 2023, vol. 51, no. 8, pp. 3346–3353. doi: 10.1080/00927872.2023.2182604

9.   Ferrara M., Trombetti M. Groups with many pronormal subgroups. Bull. Austral. Math. Soc., 2022, vol. 105, no. 1, pp. 75–86. doi:10.1017/S0004972721000277

10.   Ferrara M., Trombetti M. Locally finite simple groups whose nonnonilpotent subgroups are pronormal. Bull. Austral. Math. Soc.: publ. online, 2023, pp. 1–10. doi: 10.1017/S0004972723000576

11.   Ferrara M., Trombetti M. Periodic linear groups in which permutability is a transitive relation. Ann. Mat. Pura Appl. (4), 2024, vol. 203, no. 1, p. 361–383. doi: 10.1007/s10231-023-01367-2

12.   Vdovin, E.P., Revin, D.O. Pronormality of Hall subgroups in finite simple groups. Sib. Math. J., 2012, vol. 53, no. 3, p. 419–430. doi: 10.1134/S0037446612020231

13.   Kondrat’ev, A.S., Maslova, N.V., Revin, D.O. On the pronormality of subgroups of odd index in finite simple groups. Sib. Math. J., 2015, vol. 56, no. 6, pp. 1101–1107. doi: 10.1134/S0037446615060142

14.   Kondrat’ev, A.S., Maslova, N.V., Revin, D.O. A pronormality criterion for supplements to abelian normal subgroups. Proc. Steklov Inst. Math., 2017, vol. 296, Suppl. 1, p. 145–150. doi: 10.1134/S0081543817020134

15.   Kondrat’ev, A.S., Maslova, N.V., Revin, D.O. On the pronormality of subgroups of odd index in finite simple symplectic groups. Sib. Math. J., 2017, vol. 58, no. 3, p. 467–475. doi: 10.1134/S0037446617030107

16.   Kondrat’ev, A.S., Maslova, N.V., Revin, D.O. On pronormal subgroups in finite simple groups. Dokl. Math., 2018, vol. 98, pp. 405–408. doi: 10.1134/S1064562418060029

17.   Kondrat’ev, A.S., Maslova, N.V., Revin, D.O. Finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal. J. Group Theory, 2020. vol. 23, pp. 999–1016. doi: 10.1515/jgth-2020-0072

18.   Kondrat’ev A.S., Maslova N.V., Revin D.O. On the pronormality of subgroups of odd index in finite simple groups. In: Groups St Andrews 2017 in Birmingham, eds. C.M. Campbell, M.R. Quick, C.W. Parker, E. F.  Robertson, C.M. Roney-Dougal, London Mathematical Society Lecture Note Series, vol. 455, Cambridge: Cambridge Univ. Press., 2019, pp. 406–418. doi: 10.1017/9781108692397.016

19.   Maslova, N.V., Revin, D.O. On the pronormality of subgroups of odd index in some direct products of finite groups. J. Algebra Appl., 2023, vol. 22, no. 04, art. number 2350083. doi: 10.1142/S0219498823500834

20.   Gorenstein D., Lyons R., Solomon R. The classification of the finite simple groups. Number 3. Math. Surv. Monogr, 1994, vol. 40, no. 3. 419 p. ISBN: 978-0-8218-0391-2

21.   Kleidman P., Liebeck M. The subgroup structure of the finite classical groups. Cambridge: Cambridge University Press, 1990, 303 p. doi: 10.1017/CBO9780511629235

22.   Maslova, N.V. Classification of maximal subgroups of odd index in finite simple classical groups. Proc. Steklov Inst. Math., 2009, vol. 267, Suppl. 1, pp. 164–183. doi: 10.1134/S0081543809070153

23.   Maslova, N.V. Classification of maximal subgroups of odd index in finite simple classical groups: Addendum. Sib. Electron. Math. Reports, 2018, vol. 15, pp. 707–718. doi: 10.17377/semi.2018.15.056

24.   Maslova, N.V. Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle. Algebra Logic, 2011, vol. 50, no. 2, pp. 133–145. doi: 10.1007/s10469-011-9128-7

25.   Kondrat’ev, A.S. Normalizers of the Sylow 2-subgroups in finite simple groups. Math Notes, 2005, vol. 78, no. 3, pp. 338–346. doi: 10.1007/s11006-005-0133-9

Cite this article as: W. Guo, N.V. Maslova, D.O. Revin. Nonpronormal subgroups of odd index in finite simple linear and unitary groups. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 1, pp. 70–79. Proceedings of the Steklov Institute of Mathematics, 2024, Vol. 325, Suppl. 1, pp. S114–S122.