We consider the inclusion $\widetilde y\in F(x)$ with a multivalued mapping acting in spaces with vector-valued metrics whose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution $x \in X$ and an estimate of its deviation from a given element $x_0 \in X$ in a vector-valued metric are obtained. This result extends the known theorems on similar operator equations and inclusions in metric spaces and in spaces with $n$-dimensional metric to a more general case and, applied to particular classes of functional equations and inclusions, allows to get less restrictive, compared to known, solvability conditions as well as more precise estimates of solutions. We apply this result to the integral inclusion
$$
\widetilde{y}(t)\in f\Bigl(t,\int_a^b \varkappa(t,s) x(s)\,ds, x(t) \Bigr), \ \ t \in [a,b],
$$
where the function $\widetilde y$ is measurable, the mapping $f$ satisfies the Carathéodory conditions, and the solution $x$ is required to be only measurable (the integrability of $x$ is not assumed).
Keywords: space with vector-valued metric, multivalued mapping, vector metric regularity, Lipschitz property with operator coefficient, operator inclusion, integral inclusion
Received June 14, 2023
Revised August 18, 2023
Accepted August 21, 2023
Funding Agency: This work was supported by the Russian Science Foundation (project no. 22- 21-00772, https://rscf.ru/project/22-21-00772/).
Elena Aleksandrovna Panasenko, Cand. Sci. ( Phys.-Math.), Functional Analysis Department, Derzhavin Tambov State University, Tambov, 392000 Russia, e-mail: panlena_t@mail.ru
REFERENCES
1. Arutyunov A.V. Covering mappings in metric spaces and fixed points. Dokl. Math., 2007, vol. 76, no. 2, pp. 665–668. doi: 10.1134/S1064562407050079
2. Arutyunov A., Avakov E., Gel’man B., Dmitruk A., Obukhovskii V. Locally covering maps in metric spaces and coincidence points. J. Fixed Point Theory Appl., 2009, vol. 5, no. 1, pp. 105–127. doi: 10.1007/s11784-008-0096-z
3. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points and generalized coincidence points of two set-valued mappings. Proc. Steklov Inst. Math., 2020, vol. 308, no. 1, pp. 35–41. doi: 10.1134/S0081543820010034
4. Avakov E. R., Arutyunov A. V., Zhukovskii E. S. Covering mappings and their applications to differential equations unsolved for the derivative. Diff. Equ., 2009, vol. 45, no. 5, pp. 627–649. doi: 10.1134/S0012266109050024
5. Arutyunov A.V., Zhukovskii E.S., Zhukovskii S.E. On the well-posedness of differential equations unsolved for the derivative. Diff. Equ., 2011, vol. 47, no. 11, pp. 1541–1555. doi: 10.1134/S0012266111110012
6. Zhukovskiy E.S. On coincidence points for vector mappings. Russian Math., 2016, vol. 60, no. 10, pp. 10–22. doi: 10.3103/S1066369X16100030
7. Zhukovskiy E.S. On coincidence points of multivalued vector mappings of metric spaces. Math. Notes, 2016, vol. 100, no. 3, pp. 363–379. doi: 10.1134/S0001434616090030
8. Zhukovskii E.S. Perturbations of vectorial coverings and systems of equations in metric spaces. Sib. Math. J., 2016, vol. 57, no. 2, pp. 230–241. doi: 10.1134/S0037446616020063
9. Perov A.I. Multidimensional version of M. A. Krasnosel’skii’s generalized contraction principle. Func. Anal. Its Appl., 2010, vol. 44, no. 1, pp. 69–72. doi: 10.1007/s10688-010-0008-z
10. Zhukovskiy E.S., Panasenko E.A. On fixed points of multivalued mappings in spaces with a vector-valued metric. Proc. Steklov Inst. Math., 2019, vol. 305, suppl. 1, pp. S191–S203. doi: 10.1134/S0081543819040199
11. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., Zhukovskaya Z.T. Kantorovich’s fixed point theorem and coincidence point theorems for mappings in vector metric spaces. Set-Valued Var. Anal., 2022, vol. 30, no. 2, pp. 397–423. doi: 10.1007/s11228-021-00588-y
12. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Introduction to the theory of functional differential equations: methods and applications, NY, Cairo, Hindawi Publ. Corporation, 2007, 324 p. ISBN: 9789775945495. Original Russian text was published in Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Elementy sovremennoi teorii funktsional’no-differentsial’nykh uravnenii. Metody i prilozheniya, Moscow, Izhevsk, Inst. Komput. Issled. Publ., 2002, 384 p. ISBN: 5-93972-112-5.
13. Dmitri Burago, Yuri Burago, Sergei Ivanov. A course in metric geometry (Graduate studies in mathematics, ISSN 1065-7339; vol. 33.), Providence, Rhode Island, Amer. Math. Soc., 2001, 415 p. ISBN: 0-8218-2129-6. Translated to Russian under the title Kurs metricheskoi geometrii, Moscow, Izhevsk, Inst. Komput. Issled., 2004, 512 p. ISBN: 978-5-93972-300-7.
14. Ioffe A.D. Metric regularity and subdifferential calculus. Russian Math. Surveys, 2000, vol. 55, no. 3, pp. 501–558. doi: 10.1070/RM2000v055n03ABEH000292
15. Zhukovskaya T.V., Merchela W., Shindyapin A.I. On coincidence points of mappings in generalized metric spaces. Vestnik Rossiiskikh Univ. Math., 2020, vol. 25, no. 129, pp. 18–24 (in Russian). doi: 10.20310/2686-9667-2020-25-129-18-24
16. Merchela W. Inclusions with mappings acting from a metric space to a space with distance. Vestnik Rossiiskikh Univ. Math., 2022, vol. 27, no. 137, pp. 27–36 (in Russian). doi: 10.20310/2686-9667-2022-27-137-27-36
17. Krasnosel’skii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya. Approximate solution of operator equations, Dordrecht, Springer, 1972, 504 p. doi: 10.1007/978-94-010-2715-1 Original Russian text was published in Krasnosel’skii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Moscow, Nauka Publ., 1969, 456 p.
18. Borisovich Yu.G., Gel’man B.D., Myshkis A.D., Obukhovskii V.V. Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsial’nykh vklyuchenii [Introduction to the theory of multivalued maps and differential inclusions]. Moscow, Librokom, 2011, 224 p. ISBN: 978-5-397-01526-4
19. Natanson I.P. Theory of functions of a real variable, Dover Publ., 2016, 544 p. ISBN: 978-0486806433. Original Russian text was published in Natanson I.P., Teoriya funktsii veshchestvennoi peremennoi, Saint Petersburg, Lan’, 1999, 560 p. ISBN: 5-8114-0136-1.
20. Zhukovskiy E.S., Merchela W. A method for studying integral equations by using a covering set of the Nemytskii operator in spaces of measurable functions. Diff. Equ., 2022, vol. 58, no. 1, pp. 92–103. doi: 10.1134/S0012266122010104
21. Zhukovskii E.S., Pluzhnikova E.A. Covering mappings in a product of metric spaces and boundary value problems for differential equations unsolved for the derivative, Diff. Equ., 2013, vol. 49, no. 4, pp. 420–436. doi: 10.1134/S0012266113040034
22. Arutyunov A., de Oliveira V.A., Pereira F.L., Zhukovskiy E., Zhukovskiy S. On the solvability of implicit differential inclusions. Applicable Analysis, 2015, vol. 94, no. 1, pp. 129–143. doi: 10.1080/00036811.2014.891732
Cite this article as: E.A.Panasenko. On operator inclusions in spaces with vector-valued metrics. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 3, pp. 106–127; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2023, Vol. 323, Suppl. 1, pp. S222–S242.