AMS: 35B45, 42B20, 60J75, 47G30
DOI: 10.21538/0134-4889-2025-31-1-210-227
We study the linear and nonlinear variable coefficients Kolmogorov equations. The equations include the abstract operator $A=A\left(x\right) $ in a Fourier type Banach space $E$ and convolution terms. Here, the kinetic maximal $L^{p}$-regularity for the linear equat\i on is derived in terms of $E$-valued Sobolev spaces. Moreover, we show that the solution $u$ is also regular in time and space variables when $u$ is assumed to have a certain amount of regularity in velocity. Finally, the kinetic maximal $L^{p}$-regularity for the linear equation can be used to obtain local existence and uniqueness of solutions to a quasilinear nonlocal Kolmogorov type kinetic equation.
Keywords: Kinetic maximal regularity, Kolmogorov equation, dissipative operators, anisotropic Sobolev spaces, optimal $L^{p}$-estimates, instantaneous smoothing
REFERENCES
1. Amann H. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr., 1997, vol. 186, iss. 1, pp. 5–56. https://doi.org/10.1002/mana.3211860102
2. Alexandre R. Fractional order kinetic equations and hypoellipcity. Anal. Appl., 2012, vol. 10, iss. 3, pp. 237–247. https://doi.org/10.1142/S021953051250011X
3. Bouchut F. Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl., 2002, vol. 81, iss. 11, pp. 1135–1159. https://doi.org/10.1016/S0021-7824(02)01264-3
4. Bramanti M., Cupini G., Lanconelli E., Priola E. Global $L^p$ estimates for degenerate Ornstein — Uhlenbeck operators. Math. Z., 2010, vol. 266, pp. 789–816. https://doi.org/10.1007/s00209-009-0599-3
5. Girardi M., Lutz M. Operator-valued multiplier theorems on Besov spaces. Math. Nachr., 2003, vol. 251, iss. 1, pp. 34–51. https://doi.org/10.1002/mana.200310029
6. Chen Z.-Q., Zhang X., $L^p$ -maximal hypoelliptic regularity of nonlocal kinetic Fokker — Planck operators. J. Math. Pures Appl., 2018, vol. 116, pp. 52–87. https://doi.org/10.1016/j.matpur.2017.10.003
7. Favini A., Goldstein G.R., Goldstein J.A., Romanelli S. Degenerate second order differential operators generating analytic semigroups in $L^p$ and $W^{1,p}$ . Math. Nachr., 2002, vol. 238, iss. 1, pp. 78–102. https://doi.org/10.1002/1522-2616(200205)238:13.0.CO;2-X
8. Folland G.B., Stein E.M. Estimates for the complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 1974, vol. 27, iss. 4, pp. 429–522. https://doi.org/10.1002/cpa.3160270403
9. Di Francesco M., Polidoro S. Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Differ. Equ., 2006, vol. 11, no. 11, pp. 1261–1320. https://doi.org/10.57262/ade/1355867597
10. Kolmogoroff A. Zuf¨allige bewegungen (Zur theorie der brownschen bewegung). Ann. Math., 1934, vol. 35, no. 1, pp. 116–117. https://doi.org/10.2307/1968123
11. Niebel L., Zacher R. Kinetic maximal $L^p$ -regularity with temporal weights and application to quasilinear kinetic diffusion equations. J. Differ. Equat., 2022, vol. 307, pp. 29–82. https://doi.org/10.1016/j.jde.2021.10.043
12. Huang L., Menozzi S., Priola E. $L^p$ estimates for degenerate non-local Kolmogorov operators. J. Math. Pures Appl., 2019, vol. 121, pp. 162–215. https://doi.org/10.1016/j.matpur.2017.12.008
13. Lanconelli E., Polidoro S. On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino, 1994, vol. 52, no. 1, pp. 29–63.
14. Lunardi A. Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb{R}^n$. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., ser. 4, 1997, vol. 24, no. 1, pp. 133–164.
15. Metafune G. $L^p$ -spectrum of Ornstein — Uhlenbeck operators. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., ser. 4, 2001, vol. 30, no. 1, pp. 97–124.
16. Pazy A. Semigroups of linear operators and applications to partial differential equations. NY, Springer, 1983. 282 p. https://doi.org/10.1007/978-1-4612-5561-1
17. Rothschild L.P., Stein E.M. Hypoelliptic differential operators and nilpotent groups. Acta Math., 1976, vol. 137, pp. 247–320. https://doi.org/10.1007/BF02392419
18. Shakhmurov V.B. Embedding and separable differential operators in Sobolev — Lions type spaces. Math. Notes, 2008, vol. 84, no. 6, pp. 842–858. https://doi.org/10.1134/S0001434608110278
19. Triebel H. Interpolation theory, function spaces, differential operators. Amsterdam, NY, Oxford, NorthHolland Publ. co., 1978, 528 p. https://doi.org/10.1002/zamm.19790591227 . Translated to Russian under the title Teoriya interpolyatsii. Funktsional’nyye prostranstva. Differentsial’nyye operatory, Moscow, Mir Publ., 1980, 664 p.
20. Zaslavsky G.-M. The physics of chaos in hamiltonian systems. Second Edt., London, Imperial College Press, World Sci. Publ. Co., 2007, 328 p. https://doi.org/10.1142/p507
Received September 5, 2024
Revised November 15, 2024
Accepted November 18, 2024
Veli Shakhmurov, Dr. Phys.-Math. Sci., Prof., Antalya Bilim University Department of Industrial Engineering, Dosemealti, 07190 Antalya, Turkey, e-mail: veli.sahmurov@antalya.edu.tr; Azerbaijan State Economic University, Center of Analytical-Information Resource, 194 M. Mukhtarov AZ1001 Baku, Azerbaijan, veli.sahmurov@gmail.com; Physics and Technical Sciences, Western Caspian University, Baku, AZ1001 Azerbaijan.
Cite this article as: Veli Shakhmurov. Kinetic maximal $L^p$ -regularity for nonlocal Kolmogorov equation and application. Trudy Instituta Matematiki i Mekhaniki UrO RAN. 2025, vol. 31, no. 1, pp. 210–227.
Русский
Вели Шахмуров. Кинетическая максимальная $L^p$-регулярность для нелокального уравнения Колмогорова и ее применение
Мы изучаем линейные и нелинейные уравнения Колмогорова с переменными коэффициентами. Уравнения включают абстрактный оператор $A=A\left(x\right) $ в банаховом пространстве типа Фурье $E$ и члены свертки. Здесь в терминах $E$-значных пространств Соболева выводится кинетическая максимальная $L^{p}$-регулярность для линейного уравнения. Более того, мы показываем, что решение $u$ также регулярно во времени и пространстве переменных, если предполагается, что $u$ имеет определенную регулярность по скорости. Наконец, кинетическая максимальная $L^{p}$-регулярность для линейного уравнения может быть использована для получения локального существования и единственности решений квазилинейного нелокального кинетического уравнения колмогоровского типа.
Ключевые слова: Кинетическая максимальная регулярность, уравнение Колмогорова, диссипативные операторы, анизотропные пространства Соболева, оптимальные $L^{p}$-оценки, мгновенное сглаживание