UDK 512.542, 519.6
MSC: 20D10, 20B40
DOI: 10.21538/0134-4889-2025-31-1-154-165
The research was supported by the Russian Science Foundation and by the Belarusian Republican Foundation for Fundamental Research (project no. Φ23PHΦ-237)
For a wide family of formations $\mathfrak{F}$ (which includes Baer-local formations) of finite groups it is proved that the $ \mathfrak{F}$-hypercenter of a permutation finite group of degree $n$ can be computed in polynomial time in $n$. In particular, the algorithms for computing the $\mathfrak{F}$-hypercenter for the following classes of groups are suggested: hereditary local formations with the Shemetkov property, rank formations, formations of all quasinilpotent, Sylow tower of type $\varphi$, $p$-nilpotent, supersoluble, $w$-supersoluble and $SC$-groups. For some of these formations $\mathfrak{F}$ algorithms for the computation of the intersection of all maximal $\mathfrak{F}$-subgroups of a finite group are suggested.
Keywords: Finite group, $\mathfrak{F}$-hypercenter, Baer-local formation, permutation group computation, polynomial time algorithm
REFERENCES
1. Ballester-Bolinches A., Ezquerro L.M. Classes of finite groups. Ser. Math. Appl., vol. 584, Netherlands, Springer, 2006, 359 p.
2. Doerk K., Hawkes T. Finite soluble groups. Ser. De Gruyter Expositions in Mathematics, vol. 4, Berlin, New York, Walter de Gruyter Publ., 1992, 893 p.
3. Guo W. Structure theory for canonical classes of finite groups. Berlin, Heidelberg, Springer-Verlag, 2015, 359 p. https://doi.org/10.1007/978-3-662-45747-4
4. Shemetkov L.A., Skiba A.N. Formatsii algebraicheskikh sistem [Formations of algebraic systems]. Moscow, Nauka Publ., 1989, 256 p. ISBN: 5-02-013918-1 .
5. Ballester-Bolinches A., Pin J.-E., Soler-Escrivá X. Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited. Forum Math., 2014, vol. 26, no. 6, pp. 1737–1761. https://doi.org/10.1515/forum-2012-0055
6. Ballester-Bolinches A., Esteban-Romero R., Jiménez-Seral P., Pérez-Calabuig V. On Yang — Baxter groups. Quaest. Math., 2023, vol. 46, pp. 1273–1281.
7. Eick B., Wright C.R.B. Computing subgroups by exhibition in finite solvable groups. J. Symb. Comput., 2002, vol. 33, no. 2, pp. 129–143. https://doi.org/10.1006/jsco.2000.0503
8. Höfling B. Computing projectors, injectors, residuals and radicals of finite soluble groups. J. Symb. Comput., 2001, vol. 32, no. 5, pp. 499–511. https://doi.org/10.1006/jsco.2001.0477
9. Murashka V.I. Formations of finite groups in polynomial time: $\mathfrak{F}$-residuals and $\mathfrak{F}$-subnormality. J. Symb. Comput., 2024, vol. 122, art. 102271. https://doi.org/10.1016/j.jsc.2023.102271
10. Ballester-Bolinches A., Ezquerro L.M., Skiba A.N. On subgroups of hypercentral type of finite groups. Isr. J. Math., 2014, vol. 199, no. 1, pp. 259–265. https://doi.org/10.1007/s11856-013-0030-y
11. Ballester-Bolinches A., Soler-Escrivá A. On the $\mathfrak{F}$-hypercentre of a finite group. Math. Nachr., 2008, vol. 281, no. 4, pp. 460–465. https://doi.org/10.1002/mana.200510618
12. Guo W., Skiba A.N. On $\mathfrak{F}$Φ*-hypercentral subgroups of finite groups. J. Algebra, 2012, vol. 372, pp. 275–292. https://doi.org/10.1016/j.jalgebra.2012.08.027
13. Li B., Gong L. On f-hypercentral actions of finite group. Commun. Math. Stat., 2021, vol. 9, no. 4, pp. 521–533. https://doi.org/10.1007/s40304-020-00232-5
14. Skiba A.N. On the $\mathfrak{F}$-hypercentre and the intersection of all $\mathfrak{F}$-maximal subgroups of a finite group. J. Pure Appl. Algebra, 2012, vol. 216, no. 4, pp. 789–799. https://doi.org/10.1016/j.jpaa.2011.10.006
15. Seress Á. Permutation group algorithms. Cambridge, Cambridge University Press, 2003, 264 p. https://doi.org/10.1017/CBO9780511546549
16. Baer R. Supersoluble immersion. Canad. J. Math., 1959, vol. 11, pp. 353–369. https://doi.org/10.4153/CJM-1959-036-2
17. Huppert B. Zur theorie der formationen. Arch. Math., 1969, vol. 19, no. 6, pp. 561–574. https://doi.org/10.1007/BF01899382
18. Shemetkov L.A. Graduated formations of groups. Math. USSR-Sb., 1974, vol. 23, no. 4, pp. 593–611. https://doi.org/10.1070/SM1974v023n04ABEH002184
19. Shemetkov L.A. Frattini extensions of finite groups and formations. Comm. Algebra, 1997, vol. 25, no. 3, pp. 955–964. https://doi.org/10.1080/00927879708825900
20. Murashka V.I. On questions posed by Shemetkov, Ballester–Bolinches, and Pérez–Ramos in finite group theory. Math. Notes., 2022, vol. 112, no. 6, pp. 932–939. https://doi.org/ 10.1134/S000143462211027X
21. Ballester–Bolinches A., Pérez–Ramos M.D. On a question of L. A. Shemetkov. Comm. Algebra, 1999, vol. 27, no. 11, pp. 5615–5618. https://doi.org/10.1080/00927879908826777
22. Neumann P.M. Some algorithms for computing with finite permutation groups, in E. Robertson and C. Campbell (eds.). Proc. of groups-St. Andrews 1985, no. 121 in London Math. Soc. Lect. Note Cambridge U. Press Publ., 1987, pp. 59–92. https://doi.org/10.1017/CBO9780511600647.006
23. Kantor W.M., Luks E.M. Computing in quotient groups. In: STOC’90: Proc. of the twenty-second annual ACM symposium on Theory of Computing. Baltimore, May 14–16 ACM, 1990, pp. 524–534. https://doi.org/10.1145/100216.100290
24. Babai L. On the length of subgroup chains in the symmetric group. Comm. Algebra, 1986, vol. 14, no. 9, pp. 1729–1736. https://doi.org/10.1080/00927878608823393
25. Kozen D.C. Theory of computation. London, Springer, 2006, 418 p. https://doi.org/10.1007/1-84628-477-5
26. McKenzie P., Cook S.A. The parallel complexity of Abelian permutation group problems. SIAM J. Comput., 1987, vol. 16, no. 5, pp. 880–909. https://doi.org/10.1137/0216058
27. Babai L., Luks E.M., Seress Á. Permutations groups in NC. In: STOC ’87: Proc. of the nineteenth annual ACM Symposium on Theory of Computing, 1987, pp. 409–420. https://doi.org/ 10.1145/28395.28439
28. Chistov A.L., Ivanyos G., Karpinski M. Polynomial time algorithms for modules over finite dimensional algebras. In ISSAC’97: Proc. of the 1997 Inter. Symposium on Symbolic and Algebraic Computation, 1997, pp. 68–74. https://doi.org/10.1145/258726.258751
29. Rónyai L. Computing the structure of finite algebras. J. Symb. Comput., 1990, vol. 9, no. 3, pp. 355–373. https://doi.org/10.1016/S0747-7171(08)80017-X
30. Murashka V.I. On the $\mathfrak{F}$-hypercenter and the intersection of $\mathfrak{F}$-maximal subgroups of a finite group. J. Group Theory, 2018, vol. 21, no. 3, pp. 463–473. https://doi.org/10.1515/jgth-2017-0043
31. Vasil’ev A.F., Vasil’eva T.I., Tyutyanov V.N. On the finite groups of supersoluble type. Sib. Math. J., 2010, vol. 51, no. 6, pp. 1004–1012. https://doi.org/10.1007/s11202-010-0099-z
32. Vasilyev V.A. Finite groups with submodular sylow subgroups. Sib. Math. J., 2015, vol. 56, no. 6, pp. 1277–1288. https://doi.org/10.17377/smzh.2015.56.606
33. Zimmermann I. Submodular subgroups in finite groups. Math. Z., 1989, vol. 202, no. 4, pp. 545–557. https://doi.org/10.1007/BF01221589
34. Monakhov V.S. Finite groups with a given set of Schmidt subgroups. Math. Notes, 1995, vol. 58, no. 5, pp. 1183–1186. https://doi.org/10.1007/BF02305002
35. Robinson D.J.S. The structure of finite groups in which permutability is a transitive relation. J. Austral. Math. Soc., 2001, vol. 70, no. 2, pp. 143–160. https://doi.org/10.1017/S1446788700002573
36. Semenchuck V.N., Vasil’ev A. F. Issledovanie normal’nogo i podgruppovogo stroyeniya konechnykh grupp [Studies of normal and subgroup structure of finite groups]. Ch. Characterization of local formations $\mathfrak{F}$ by properties of minimal non-$\mathfrak{F}$-groups. Minsk, Nauka i tekhnika Publ., 1984, pp. 175–181.
37. Vasil’ev A.F., Vasilyeva T.I. On finite groups whose principal factors are simple groups. Russian Math. (Iz. VUZ), 1997, vol. 41, no. 11, pp. 8–12.
38. Monakhov V.S., Kniahina V.N. Finite groups with $\mathbb{P}$-subnormal subgroups. Ricerche mat., 2013, vol. 62, pp. 307–322. https://doi.org/10.1007/s11587-013-0153-9
Received October 11, 2024
Revised January 8, 2025
Accepted January 13, 2025
Funding Agency: The research was supported by the Russian Science Foundation and by the Belarusian Republican Foundation for Fundamental Research (project no. Φ23PHΦ-237).
Viachaslau Igaravich Murashka, Cand. Sci. (Phys.-Math.), Francisk Skorina Gomel State University, Gomel, 246019 Belarus, e-mail: mvimath@yandex.ru
Cite this article as: V.I. Murashka. Formations of finite groups in polynomial time II: the $\mathfrak{F}$-hypercenter and its generalizations.Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 1, pp. 154–165.
Русский
В.И. Мурашко. Распознавание формаций конечных групп за полиномиальное время II: $\mathfrak{F}$-гиперцентр и его обобщения
Для широкого семейства формаций $\mathfrak{F}$ (включающего в себя композиционные формации) конечных групп доказано, что $\mathfrak{F}$-гиперцентр конечной группы перестановок степени $n$ может быть вычислен за полиномиальное время от $n$. В частности, предложены алгоритмы вычисления $\mathfrak{F}$-гиперцентра для следующих классов групп: наследственные локальные формации с условием Шеметкова, ранговые формации, формации всех квазинильпотентных, $\varphi$-дисперсивных, $p$-нильпотентных, сверхразрешимых, $w$-сверхразрешимых и $SC$-групп. Для некоторых из этих формаций $\mathfrak{F}$ предложены алгоритмы вычисления пересечения всех максимальных $\mathfrak{F}$-подгрупп конечной группы.
Ключевые слова: Конечная группа, $\mathfrak{F}$-гиперцентр, композиционная формация, вычисления в группах перестановок, полиномиальный алгоритм