A.-R.K. Ramazanov, V.G. Magomedova. Convergence bounds for splines for three-point rational interpolants of continuous and continuously differentiable functions ... С. 224-233.

For functions $f(x)$ continuous on an interval $[a,b]$ and grids of pairwise different nodes $\Delta\colon a=x_0<x_1<\dots<x_N=b$ $(N\geqslant 2)$, we study the convergence rate of piecewise rational functions $R_{N,1} (x)=R_{N,1}(x,f)$ such that, for $x\in [x_{i-1}, x_i]$ ($i=1,2,\dots,N$), we have $R_{N,1}(x)=(R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$, where $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i)$ ($i=1,2,\dots,N-1$); the coefficients $\alpha_i$, $\beta_i$, and $\gamma_i$ are defined by the conditions $R_i(x_j)=f(x_j)$ for $j=i-1,i,i+1$; and the poles~$g_i$ are defined by the nodes. It is assumed that $R_0(x)\equiv R_1(x)$ and $R_N(x)\equiv R_{N-1} (x)$.

Bounds for the convergence rate of $R_{N,1} (x,f)$ are found in terms of certain structural characteristics of the function:

(1) the third-order modulus of continuity in the case of uniform grids;

(2) the variation and the modulus of change of the first and second derivatives in the case of continuously differentiable functions $f(x)$; here, the bounds in terms of the variation have the order of the best pol

Keywords: splines, interpolation splines, rational splines.

The paper was received by the Editorial Office on April 17, 2017.

Abdul-Rashid Kehrimanovich Ramazanov, Dr. Phys.-Math., Prof., Dagestan State University, the Republic of Dagestan, Makhachkala, 367002 Russia; Dagestan Scientific Center RAN, the Republic of Dagestan, Makhachkala, 367025 Russia, e-mail: ar-ramazanov@rambler.ru

Vazipat Gusenovna Magomedova, Cand. Sci. (Phys.-Math.), Dagestan State University, the Republic of Dagestan, Makhachkala, 367002 Russia, e–mail: vazipat@rambler.ru


1.   Subbotin Yu. N., Chernykh N. I. Order of the best spline approximations of some classes of functions. Math. Notes of the Academy of Sciences of the USSR, 1970, vol. 7, no. 1, pp. 20–26.doi: 10.1007/BF01093336 .

2.   Ahlberg J., Nilson E., Waish J. The theory of splines and their applications. New York: Acad. Press, 1967, 284 p. ISBN: 9781483222950 . Translated under the title Teorija splajnov i ee prilozhenija. M.:Mir, 1972, 319 p.

3.   Stechkin S.B., Subbotin Yu.N. Splajny v vychislitelnoy matematike [Splines in computational mathematics]. Moscow: Nauka Publ., 1976, 248 p.

4.   Zavialov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splajn funkcij [Methods of spline–functions]. Moscow: Nauka Publ., 1980, 352 p.

5.   Korneichuk N.P. Splajny v teorii priblizheniya [Splines in approximation theory]. Moscow: Nauka Publ., 1984, 352 p.

6.   Malozyomov V. N., Pevny A. B. Polinomial’nye splainy [Polynomial splines]. Leningrad, LGU, 1986, 120 p.

7.    Schaback R. Spezielle rationale Splinefunktionen. J. Approx.Theory, 1973, vol. 7, no. 3,pp. 281–292. doi: 10.1016/0021-9045(73)90072-5 .

8.    Edeo A., Gofeb G., Tefera T. Shape preserving C2 rational cubic spline interpolation. American Scientific Research Journal for Engineering, Technology and Sciences (ASRJETS), 2015, vol. 12, no. 1,pp. 110–122.

9.   Ramazanov A.-R.K., Magomedova V.G. Splines on rational interpolants. Dagestan. Elektron. Mat. Izv., 2015, iss. 4, pp. 22–31 (in Russian).

10.   Ramazanov A.-R. K., Magomedova V. G. Splines for four-point interpolants. Tr. Inst. Mat. Mekh. UrO RAN, 2016, vol. 22, no. 4, pp. 233–246 (in Russian). doi: 10.21538/0134-4889-2016-22-4-233-246 .

11.   Subbotin Yu.N. Variations on a spline theme. Fundam. Prikl. Mat., 1997, vol. 3, no. 4, pp. 1043–1058 (in Russian).

12.   Sevastyanov E. A. Piecewise-monotone approximation and Φ–variations. Analysis Math., 1975, vol. 1, pp. 141–164 (in Russian).

13.   Lagrange R. Sur oscillations d‘order superior d‘une functions numerique. Ann. Sci. Д Ecole Norm. Sup. (3), 1965, vol. 82, no 2, pp. 101–130.

14.    Chanturiya Z. A. On uniform convergence of Fourier series. Math. USSR-Sb., 1976, vol. 29, no. 4, pp. 475–495. doi: 10.1070/SM1976v029n04ABEH003682 .

15.   Whitney H. On functions with bounded n–th differences. J. Math. Pures Appl., 1957, vol. 6 (9), no. 36, pp. 67–95.