We study periodic groups of the form $G=F\leftthreetimes\langle a\rangle$ with the conditions $C_F(a)=1$ and $|a|=4$. In this case, a finite group~$F$ is solvable and its commutator subgroup is nilpotent (Gorenstein and Herstein, 1961), and a locally finite group~$F$ is solvable and its second commutator subgroup is contained in the center $Z(F)$ (Kovach, 1961). A locally finite group $F$ is solvable and its second commutator subgroup is contained in the center $Z(F)$ (Kovach, 1961). It is unknown whether a periodic group $F$ is always locally finite (Shumyatskii's Question 12.100 from the Kourovka Notebook). We establish the following properties of groups. For $\pi=\pi(F)\setminus\pi(C_F(a^2))$, the group $F$ is $\pi$-closed and the subgroup $O_\pi(F)$ is abelian and is contained in $Z([a^2,F])$ (Theorem 1). A group $F$ without infinite elementary abelian $a^2$-admissible subgroups is locally finite (Theorem 2). In a nonlocally finite group $F$, there is a nonlocally finite $a$-admissible subgroup factorizable by two locally finite $a$-admissible subgroups (Theorem 3). For any positive integer $n$ divisible by an odd prime, we give examples of nonlocally finite periodic groups with a regular automorphism of order $n$.
Keywords: periodic groups, regular automorphism (fixed-point-free automorphism), solvability, local finiteness, nilpotency
Received July 13, 2019
Revised September 30, 2019
Accepted October 21, 2019
Funding Agency: This work was supported by the Russian Foundation for Basic Research (project № 19-01-00566 A).
Sozutov Anatoliy Ilich, Dr. Phys.-Math. Sci., Prof., Siberian Federal University, Krasnoyars, 660041 Russia, e-mail: sozutov_ai@mail.ru
REFERENCES
1. Gorenstein D. Finite simple groups. An introduction to their classification. University Series in Mathematics. N Y: Plenum Publishing Corp., 1982, 333 p. ISBN: 0-306-40779-5 . Translated to Russian under the title Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu. Moscow: Mir Publ., 1985, 352 p.
2. Gorenstein D., Herstein I.N. Finite Groups admitting a fixed-point-free automorphism of order 4. Am. J. Math., 1961, vol. 83, no. 1, pp. 71–78. doi: 10.2307/2372721
3. Kovacs L.G. Groups with regular automorphisms of order four. Math Z., vol. 75, no. 1, pp. 277–294. doi: 10.1007/BF01211026
4. Burnside W. Theory of groups of finite order. Cambridge: Cambridge University Press, 1897, 387 p.
5. Nagata M. Note on groups with involutions. Proc. Japan Acad., 1952, vol. 28, no. 10, pp. 564–566. doi: 10.3792/pja/1195570787
6. Neumann B.H. On the commutativity of addition. J. London Math. Soc., 1940, vol. 15, no. 3, pp. 203–208. doi: 10.1112/jlms/s1-15.3.203
7. Burnside W. Theory of groups of finite order. Cambridge: Cambridge University Press, 1911, 512 p. ISBN: 1108050328 .
8. Neumann B.H. Groups with automorphisms that leave only the neutral element fixed. Arch. Math., 1956, vol. 7, no. 1, pp. 1–5. doi: 10.1007/BF01900516
9. Zhurtov A.Kh. Regular automorphisms of order 3 and Frobenius pairs. Siberian Math. J., 2000, vol. 41, no. 2, pp. 268–275. doi: 10.1007/BF02674596
10. Khukhro E.I., Mazurov V.D. (eds) Unsolved problems in group theory. The Kourovka Notebook. 227 p. Available at: ArXiv:1401.0300v6 [math.GR] June 2015.
11. Fischer B. Finite groups admitting a fixed-point-free automorphism of order 2p (I). J. Algebra, 1966, vol. 3, no. 1, pp. 99–114. doi: 10.1016/0021-8693(66)90021-4
12. Fischer B. Finite groups admitting a fixed-point-free automorphism of order 2p (II). J. Algebra, 1967, vol. 5, no. 1, pp. 25–40. doi: 10.1016/0021-8693(67)90023-3
13. Shunkov V.P. On periodic groups with an almost regular involution. Algebr Logic., vol. 11, no. 4, pp. 260–272. doi: 10.1007/BF02219098
14. Kondratiev A.S. Gruppy i algebry Li [Lie groups and Lie algebras]. Ekaterinburg: UrO RAS Publ., 2009, 310 p. ISBN: 978-5-7691-2111-1 .
15. Sozutov A.I., Suchkov N.M., Suchkova N.G. Beskonechnye gruppy s involyutsiyami [Infinite groups with involutions]. Krasnoyarsk: Siberian Federal University Publ., 2011, 149 p. ISBN: 978-5-7638-2127-7 .
16. Shunkov V.P. On infinite centralizers of groups. Algebra and Logic., vol. 13, no. 2, pp. 129–130. doi: 10.1007/BF01463152
17. Adyan S.I. The Burnside problem and identities in groups. Berlin; Heidelberg; N Y: Springer-Verlag, 1979, 311 p. ISBN: 978-3-642-66934-7 . Original Russian text published in Adyan S.I. Problema Bernsaida i tozhdestva v gruppakh. Moscow: Nauka Publ., 1975. 335 p.
18. Neumann H. Varieties of Groups. Berlin; Heidelberg: Springer-Verlag, 1967, 194 p. doi: 10.1007/978-3-642-88599-0 . Translated to Russian under the title Mnogoobraziya grupp. Moscow: Mir Publ., 1969, 264 p.
19. Hall M., Jr. The theory of groups. N Y: MacMillan Co., 1959, 434 pp. Translated to Russian under the title Teoriya grupp, Moskva: Inostran. Literatura Publ., 1962, 468 p.
20. Kargapolov M.I., Merzlyakov Yu.I. Fundamentals of the theory of groups. N Y; Heidelberg; Berlin: Springer-Verlag, 1979, 203 p. ISBN: 978-1-4612-9966-0 . Original Russian text published in Kargapolov M.I., Merzlyakov Yu.I. Osnovy teorii grupp. Moscow: Nauka Publ., 1977. 240 p.
21. Blackburn N. Some remarks on Cernikov p-groups. Illinois J. Math., 1962, vol. 6, no. 3, pp. 421–431. doi: 10.1215/ijm/1255632502
Cite this article as: A.I.Sozutov. On periodic groups with a regular automorphism of order 4, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 4, pp. 201–209; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2021, Vol. 313, Suppl. 1, pp. S185–S193.