M.S. Nirova. Codes in distance-regular graphs with $\theta_2 = -1$

If a distance-regular graph Γ of diameter 3 contains a maximal 1-code C that is both locally regular and last subconstituent perfect, then Γ has intersection array {a(p+1),cp,a+1;1,c,ap} or {a(p+1),(a+1)p,c;1,c,ap}, where a=a3, c=c2, and p=p333 (Juriˇsicˊ and Vidali). In first case, \Gamma has eigenvalue \theta_2=-1 and the graph \Gamma_3 is pseudogeometric for GQ(p+1,a). In the second case, \Gamma is a Shilla graph. We study graphs with intersection array \{a(p+1),cp,a+1;1,c,ap\} in which any two vertices at distance 3 are in a maximal 1-code. In particular, we find four new infinite families of intersection arrays: \{a(a-2),(a-1)(a-3),a+1;1,a-1,a(a-3)\} for a\ge 5, \{a(2a+3),2(a-1)(a+1),a+1;1,a-1,2a(a+1)\} for a not congruent to 1 modulo 3, \{a(2a-3),2(a-1)(a-2),a+1;1,a-1,2a(a-2)\} for even a not congruent to 1 modulo 3, and \{a(3a-4),(a-1)(3a-5),a+1;1,a-1,a(3a-5)\} for even a congruent to 0 or 2 modulo 5.

Keywords: distance-regular graph, maximal code

The paper was received by the Editorial Office on June, 26, 2018.

Marina Sefovna Nirova, Cand. Sci. (Phys.-Math.), Kabardino-Balkarian State University named after H.M. Berbekov, Nal’chik, 360004 Russia, e-mail: nirova_m@mail.ru

REFERENCES

1.   Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin; Heidelberg; N Y: Springer-Verlag, 1989, 495 p. ISBN: 0387506195 .

2.   Jurisic A., Vidali J. Extremal 1-codes in distance-regular graphs of diameter 3. Des. Codes Cryptogr., 2012, vol. 65, no. 1-2, pp. 29–47. doi: 10.1007/s10623-012-9651-0 .

3.   Makhnev A.A., Nirova M.S. Distance-regular Shilla graphs with b_2 = c_2. Math. Notes, 2018, vol. 103, no. 5-6, pp. 780–792. doi: 10.1134/S0001434618050103 .

4.   Koolen J.H., Park J. Shilla distance-regular graphs. Europ. J. Comb., 2010, vol. 31, no. 8, pp. 2064–2073. doi: 10.1016/j.ejc.2010.05.012 .

5.   Koolen J.H., Park J., Yu H. An inequality involving the second largest and smallest eigenvalue of a distance-regular graph. Linear Algebra Appl., 2011, vol. 434, no. 12, pp. 2404–2412. doi: 10.1016/j.laa.2010.12.032 .

6.   Makhnev A.A. On graphs in which the Hoffman bound for cocliques equals the Cvetcovich bound. Dokl. Math., 2011, vol. 83, no. 3, pp. 340–343. doi: 10.1134/S106456241 .

7.   Makhnev A.A. Jr., Makhnev A.A. Ovoids and bipartite subgraphs in generalized quadrangles. Math. Notes, 2003, vol. 73, iss. 5-6, pp. 829–837. doi: 10.1023/A:102405391 .