For a distance-regular graph $\Gamma$ of diameter 3, the graph $\Gamma_i$ can be strongly regular for $i=2$ or $3$. Finding the parameters of $\Gamma_i$ given the intersection array of $\Gamma$ is a direct problem, and finding the intersection array of $\Gamma$ given the parameters of $\Gamma_i$ is the inverse problem. The direct and inverse problems were solved earlier by A.A. Makhnev and M.S. Nirova for $i=3$. In the present paper, we solve the inverse problem for $i=2$: given the parameters of a strongly regular graph $\Gamma_2$, we find the intersection array of a distance-regular graph $\Gamma$ of diameter 3. It is proved that $\Gamma_2$ is not a graph in the half case. We also refine Nirova's results on distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_2$ and $\Gamma_3$ are strongly regular. New infinite series of admissible intersection arrays are found: $\{r^2+3r+1,r(r+1),r+2;1,r+1,r(r+2)\}$ for odd $r$ divisible by 3 and
$\{2r^2+5r+2,r(2r+2),2r+3;1,2r+2,r(2r+3)\}$ for $r$ indivisible by $3$ and not congruent to $\pm 1$ modulo $5$.
Keywords: strongly regular graph, distance-regular graph, intersection array.
The paper was received by the Editorial Office on May 11, 2018.
Funding Agency: This work was supported by the Russian Science Foundation (project no. 14-11-00061-П).
Aleksandr Alekseevich Makhnev, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia; Ural Federal University, Yekaterinburg, 620002 Russia, e-mail: makhnev@imm.uran.ru.
Dmitrii Viktorovich Paduchikh, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia,
e-mail: dpaduchikh@gmail.com.
REFERENCES
1. Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin; Heidelberg; N Y: Springer-Verlag, 1989, 495 p. ISBN: 0387506195 .
2. Makhnev A., Nirova M. On distance-regular Shilla graphs with $b_2 = c_2$// Mat. Zametki. 2018. Vol. 103, № 5. P. 730–744. doi: 10.4213/mzm11503 .
3. Coolsaet K., Jurisic A. Using equality in the Krein conditions to prove the nonexistence of certain distance-regular graphs. J. Comb. Theory Ser. A., 2008, vol. 115, pp. 1086–1095. doi: 10.1007/s10623-012-9651-0 .
4. Shi M., Krotov D., Sole P. A new distance-regular graph of diameter 3 on 1024 vertices [e-resource]. 2018. 12 p. Available at: https://arxiv.org/pdf/1806.07069.pdf .
5. Gavrilyuk A., Makhnev A. Distance-regular graph with intersection array {45,30,7;1,2,27} does not exist. Discrete Math. Appl., 2013, vol. 23, pp. 225–244.
6. Gavrilyuk A., Makhnev A. Distance-regular graphs with intersection arrays {52,35,16;1,4,28} and {69,48,24;1,4,46} do not exist. Des. Codes Cryptogr., 2012, vol. 65, pp. 49–54.
7. Urlep M. Triple intersection numbers in Q-polinomial distance-regular graphs. Europ. J. Comb., 2012, vol. 33, pp. 1246–1252.
8. Koolen J.H., Park J. Shilla distance-regular graphs. Europ. J. Comb., 2010, vol. 31, no. 8, pp. 2064–2073. doi: 10.1016/j.ejc.2010.05.012 .
9. Nirova M. On distance-regular graphs $\Gamma$ with strongly regular $\Gamma_2$ and $\Gamma_3$. Sib. Elektron. Mat. Izv., 2018, vol. 15, pp. 175–185. doi: 10.17377/semi.2018.15.017 .
10. Jurisic A., Vidali J. Extremal 1-codes in distance-regular graphs of diameter 3. Des. Codes Cryptogr., 2012, vol. 65, no. 1-2, pp. 29–47. doi: 10.1007/s10623-012-9651-0 .
11. Koolen J.H., Park J. A relationship between the diameter and the intersection number $c_2$ for a distance-regular graphs. Des. Codes Cryptogr., 2012, vol. 65, no. 1-2, pp. 55–63. doi: 10.1007/s10623-011-9600-3 .
12. Degraer J. Isomorph-free exhaustive generation algorithms for association schemes: PHD. Gent: Univ. Gent., 2007. 240 p.