MSC: 20D10, 20D20
DOI: 10.21538/0134-4889-2025-31-4-290-299
This work was supported by General Program of Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant # 2024D01C200), NSFC (Grant # 12371018), Fundamental Research Funds for the Central Universities (Grant # B240201093/2013), NSFC-RFBR (Grant # 12011530061), and Yili Normal University General Natural Science Project for Enhancing Comprehensive Discipline Strength (Grant # 22XKZY19).
In this paper, we extend the formation $\hat{\mathfrak{J}_{pr}}$, which is generated by the class $\mathfrak{J}_{pr}$ originally introduced by Demina and Maslova. The class $\mathfrak{J}_{pr}$ consists of finite groups in which every non-solvable maximal subgroup has a primary index. Building upon this framework, we introduce and study two generalized formations, denoted by $\hat{\mathfrak{J}}$ and $\hat{\mathfrak{J}_{p}}$, which are obtained by involving minimal non-solvable maximal subgroups and applying a localization approach to maximal subgroups. We establish new sufficient conditions under which a finite group belongs to these formations. In addition, we give examples of non-solvable groups to illustrate the distinctions between the class $\mathfrak{J}_{pr}$ and its generalizations.
Keywords: formation, non-solvable group, second maximal subgroup, the core of subgroup
REFERENCES
1. Bianchi M., Mauri A. G. B., Hauck P. On finite groups with nilpotent Sylow-normalizers. Arch. Math., 1986, vol. 47, no. 3, pp. 193–197. https://doi.org/10.1007/BF01191993
2. Bray H.G. Between Nilpotent and Solvable. Passaic; New Jersey-USA: Polygonal Publ. House, 1982.
3. Demina E.N., Maslova N.V. Non-abelian composition factors of a finite group with arithmetic constraints on non-solvable maximal subgroups. Proc. Steklov Inst. Math. (Suppl.), 2015., vol. 289, suppl. 1, pp. 64–76. https://doi.org/10.1134/S0081543815050065
4. Guralnick R.M. Subgroups of prime power index in a simple group. J. Algebra, 1983, vol. 81, no. 2, pp. 304–311. https://doi.org/10.1016/0021-8693(83)90190-4
5. Guo W. The theory of classes of groups. Beijing; New York; Dordrecht; Boston; London: Science Press-Kluwer Acad. Publ., 2000.
6. Konovalova M.N., Monakhov V.S., Sokhor I.L. On 2-maximal subgroups of finite groups. Comm. Algebra, 2021, vol. 50, no. 1, pp. 96–103. https://doi.org/10.1080/00927872.2021.1952213
7. Li S., Liu, H., Liu D. Semi-subnormal-cover-avoidance subgroups and the solvability of finite groups. J. Math., 2017, vol. 37, no. 6, pp. 1303–1308.
8. Lytkina D.V., Zhurtov A.Kh. Finite groups whose maximal subgroups have only soluble proper subgroups. Sib. Electron. Math. Rep., 2022, vol. 19, no. 1, pp. 237–240. https://doi.org/10.33048/semi.2022.19.017
9. Thompson J.G. A special class of non-solvable groups. Math. Z., 1959, vol. 72, no. 2, pp. 458–462.
10. Wang Y. The influence of some special second maximal subgroups on the structure of finite groups and their applications: PhD dissertation, 2023, Yangzhou University, Yangzhou, Jiangsu, China.
11. Wang Y., Miao L., Gao Z., Liu W. The influence of second maximal subgroups on the generalized p-solvability of finite groups. Comm. Algebra, 2021, vol. 50, no. 6, pp. 2584–2591. https://doi.org/10.1080/00927872.2021.2014512
12. Xu M., Huang J., Li H., Li S. Finite Group Theory (Volume II). Beijing: Science Press, 1999.
13. Zhang X., Liu W., Wang H. The influence of second maximal subgroups with given properties on the structure of the groups. J. Shandong Univ. (Natural science), 2024, vol. 59, no. 8, pp. 15–19. https://doi.org/10.6040/j.issn.1671-9352.0.2023.404
Received May 22, 2025
Revised August 25, 2025
Accepted September 8, 2025
Funding Agency: This work was supported by General Program of Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant # 2024D01C200), NSFC (Grant # 12371018), Fundamental Research Funds for the Central Universities (Grant # B240201093/2013), NSFC-RFBR (Grant # 12011530061), and Yili Normal University General Natural Science Project for Enhancing Comprehensive Discipline Strength (Grant # 22XKZY19).
Wenxia Zhou, School of Mathematics, Hohai University, Nanjing, 210098 China, e-mail: zhouwx2000@163.com
Long Miao, School of Mathematics, Hohai University, Nanjing, 210098 China, e-mail: 20210088@hhu.edu.cn
Baijun Gao, corresponding author, School of Mathematics and Statistics, Yili Normal University, Yining, 835000 China, e-mail: dqgbj2008@163.com
Ran Li, School of Mathematics, Hohai University, Nanjing, 210098 China, e-mail: LIRAN_0901@outlook.com
Cite this article as: Wenxia Zhou, Long Miao, Baijun Gao, Ran Li. A note on the non-solvable formation $\hat{\mathfrak{J}_{pr}}r$. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 290–299.
Русский
Вэнься Чжоу, Лун Мяо, Байцзюнь Гао, Ран Ли. Замечание о неразрешимой формации $\hat{\mathfrak{J}_{pr}}r$
В этой статье мы расширяем формацию $\hat{\mathfrak{J}_{pr}}$, которая порождается классом $\mathfrak{J}_{pr}$, первоначально введенным Деминой и Масловой. Класс $\mathfrak{J}_{pr}$ состоит из конечных групп, в которых каждая неразрешимая максимальная подгруппа имеет примарный индекс. Опираясь на эту структуру, мы вводим и изучаем две обобщенные формации, обозначаемые $\hat{\mathfrak{J}}$ и $\hat{\mathfrak{J}_{p}}$, которые получаются путем включения минимальных неразрешимых максимальных подгрупп и применения локализационного подхода к максимальным подгруппам. Мы устанавливаем новые достаточные условия, при которых конечная группа принадлежит этим формациям. Кроме того, мы приводим примеры неразрешимых групп, иллюстрирующие различия между классом $\mathfrak{J}_{pr}$ и его обобщениями.
Ключевые слова: формация, неразрешимая группа, вторая максимальная подгруппа, ядро подгруппы