A.I. Korotkii. Assimilation of irregular boundary data in recovering model coefficients ... P. 214-229

An extremal (variational) problem for minimizing a certain residual functional is considered. The extremal problem is a variational formulation of the inverse problem of finding the thermal diffusivity in a steady-state diffusion-advection-reaction model. The initial information for solving the inverse problem is the results of measuring the trace of the normal derivative of the solution to the corresponding boundary value problem for this model at the model’s operating boundary. The residual functional is the difference between the normal derivatives of the simulated and observed states of the model in the metric of negative Sobolev space at the boundary of the model’s operating domain. A preliminary assertion is proved regarding the existence and uniqueness of the trace of the normal derivative of the solution in fractional-order negative Sobolev space at the boundary, allowing for a correct formulation of the inverse problem and its variational formulation. Various aspects of the extremal problem are investigated. It is shown that the set of minimum points in the variational problem may be empty. Some conditions for the solvability of a variational problem are also presented when the set of minimum points is nonempty. Some necessary conditions for the uniqueness of a minimizing element are indicated. The concepts of weak and strong well-posedness of an extremal problem are formulated. Strong well-posedness implies weak well-posedness, and some conditions for strong well-posedness are indicated. Examples of problems in which both strong and weak well-posedness of the problem are absent are given; weak but not strong well-posedness exists. Necessary conditions for the minimum of the residual functional in a special problem are formulated.

Keywords: diffusion–advection–reaction equation, thermal diffusivity coefficient, inverse problem, residual functional, extremal problem, variational method, minimum point

Received October 10, 2025

Revised October 23, 2025

Accepted October 27, 2025

Alexander Illarionovich Korotkii, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: korotkii@imm.uran.ru

REFERENCES

1.   Landau L.D., Lifshitz E.M. Fluid mechanics. Vol. 6. Oxford, Pergamon Press, 1987, 539 p. ISBN-10: 0080339336. Original Russian text published in Landau L. D., Lifshits E. M. Teoreticheskaya fizika. Tom 6: Gidrodinamika, Moscow, Nauka Publ., 1986, 736 p.

2.   Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford, Clarendon Press, 1961, 652 p. https://doi.org/10.1017/S0022112062210592

3.   Tikhonov A.N., Arsenin V.Ya. Methods for solutions of ill-posed problems. Transl. from the 2nd Russian ed., New York, Wiley, 1977, 258 p. ISBN: 0470991240 . Original Russian text published in Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach, Moscow, Nauka Publ., 1979, 285 p.

4.   Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications. In: Inverse and ill-posed problems series. Vol. 36. Utrecht etc., VSP, 2002, 281 p. https://doi.org/10.1515/9783110944822 . Original Russian text published in Ivanov V. K., Vasin V. V., Tanana V. P. Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Moscow, Nauka Publ., 1978, 206 p.

5.   Kabanikhin S.I. Inverse and ill-posed problems, Berlin, Boston, De Gruyter, 2011, 475 p. https://doi.org/10.1515/9783110224016 . Original Russian text published in Kabanikhin S. I. Obratnye i nekorrektnye zadachi, Novosibirsk, Sib. Nauch. Izd. Publ., 2009, 458 p. ISBN: 5-98365-003-3 .

6.   Samarskii A.A., Vabishchevich P.N. Numerical methods for solving inverse problems of mathematical physics. Berlin, Walter de Gruyter, 2007, 438 p. https://doi.org/10.1515/9783110205794 . Original Russian text published in Samarskii A. A., Vabishchevich P. N. Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Moscow, Editorial URSS Publ., 2004, 478 p. ISBN: 5-354-00156-0 .

7.   Alekseev G.V. Zadachi upravleniya dlya statsionarnykh modeley teplomassoperenosa i magnitnoy gidrodinamiki [Control problems for stationary models of heat and mass transfer and magnetohydrodynamics]. Moscow, Nauka Publ., 2007, 292 p.

8.   Alekseev G.V., Tereshko D.A. Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti [Analysis and optimization in viscous fluid dynamics]. Vladivostok, Dal’nauka Publ., 2008, 365 p. ISBN: 5804410458 .

9.   Korotkii A.I., Tsepelev I.A., Ismail-Zadeh A.T. Assimilating data on the free surface of a fluid flow to constrain its viscosity. Proc. Steklov Inst. Math. (Suppl.), 2022, vol. 319, suppl. 1, pp. S162–S174. https://doi.org/10.1134/S0081543822060141

10.   Korotkii A.I., Tsepelev I.A. On the correctness of one extreme problem, related to inverse coefficient problems. Trudy Inst. Mat. i Mekh. UrO RAN, 2024, vol. 30, no. 4, pp. 170–179. https://doi.org/10.21538/0134-4889-2024-30-4-170-179

11.   Ladyzhenskaya O.A. The mathematical theory of viscous incompressible flow. NY, Gordon and Breach, 1987, 224 p. ISBN: 0677207603 . Original Russian text published in Ladyzhenskaya O. A. Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Moscow, Fizmatlit Publ., 1961, 203 p.

12.   Ladyzhenskaya O.A., Ural’tseva N.N. Linear and quasilinear elliptic equations. Ne, London, Academic Press, 1968, 495 p.

13.   Grisvard P. Elliptic problems in nonsmooth domains. Boston, London, Melbourn, Pitman Adv. Publ. Program, 1985, 410 p.

14.   Adams R.A. Sobolev spaces. New York, Academic Press, 1975, 268 p.

15.   Mikhailov V.P. Differentsial’nye uravneniya v chastnykh proizvodnykh [Partial differential equations]. Moscow, Nauka Publ., 1976, 392 p.

16.   Mikhlin S.G. Lineinye uravneniya v chastnykh proizvodnykh [Linear partial differential equations]. Moscow, Vysshaya Shkola, 1977, 431 p.

17.   Aubin J.P. Approximation of elliptic boundary-value problems. New York, London, Sydney, Toronto: Wiley-Interscience, 1972, 360 p. ISBN: 0471036501 . Translated to Russian under the title Priblizhennoye resheniye ellipticheskikh krayevykh zadach, Moscow, Mir Publ., 1977, 384 p.

18.   Trenogin V.A. Funktsional’nyy analiz [Funktsional analysis]. Moscow, Fizmatlit Publ., 2002, 488 p. ISBN: 5-9221-0272-9 .

19.   Vasil’ev F.P. Metody optimizatsii [Optimization methods]. Moscow, Faktorial Press, 2002, 824 p. ISBN: 5-88688-056-9 .

20.   Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional’nogo analiza [Elements of function theory and functional analysis]. Moscow, Nauka Publ., 1972, 496 p.

 Cite this article as: A.I. Korotkii. Assimilation of irregular boundary data in recovering model coefficients. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 214–229.