B.I. Konosevich, Yu.B. Konosevich. Estimates of the unbounded separatrices of the differential equation of the current-free model of a synchronous motor ... P. 188-202

We consider a simplified model of a synchronous electric motor described by a second-order differential equation which is nonlinear with respect to the angular unknown, is linear with respect to its time derivative, and does not include electric currents. This equation plays the role of etalon equation in Leonov’s nonlocal reduction method which gives conditions where the global stability of such an equation implies the global stability of a multidimensional phase ODE system. It is exploiting in the reduction method that in the case of global stability of this equation, there exists an unbounded separatrix of each saddle point in its fourth quadrant. In the present work, regions of monotonicity and non-monotonicity are found for these unbounded separatrices and two-sided linear and nonlinear estimates are obtained for them.

Keywords: synchronous motor model, unbounded separatrix, critical value, global stability, nonlocal reduction method

Received October 14, 2025

Revised October 28, 2025

Accepted November 3, 2025

Funding Agency: The work was carried out within the framework of the development program of the regional Azov-Black Sea Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Grant Agreement no. 075-02-2025-1620).

Boris Ivanovich Konosevich, Dr. Phys.-Math. Sci., Institute of Applied Mathematics and Mechanics, Donetsk, 283048 Russia, e-mail: ipmm_mtt@mail.ru

Yuliya Borisovna Konosevich, Cand. Sci. (Phys.-Math.), Institute of Applied Mathematics and Mechanics, Donetsk, 283048 Russia, e-mail: konos.donetsk@yandex.ru

REFERENCES

1.   Gelig A.Kh., Leonov G.A., Yakubovich V.A. Ustoychivost’ nelineynyh system s needinstvennym sostoyaniem ravnovesiya [Stability of nonlinear systems with a nonunique equilibrium state]. Moscow, Nauka Publ., 1978, 400 p.

2.   Barbashin E.A., Tabueva V.A. Dynamicheskie systemy s tsilindricheskim fazovym prostranstvom [Dynamical systems with the cylindrical phase space]. Moscow, Nauka Publ., 1969, 300 p.

3.   Leonov G.A. Phase synchronization: Theory and applications. Autom. Remote Control, 2006, vol. 67, no. 10, pp. 1573–1609. https://doi.org/10.1134/S0005117906100031

4.   Kopylov I.P. Matematicheskoe modelirovanie elektricheskikh mashin: Uchebnik dlya vuzov [Mathematical modelling of electrical machines. Textbook for high school]. Moscow, Vysshaya Shkola Publ., 2001, 327 p. ISBN: 5-06-003861-0 .

5.   Leonov G.A., Zaretskiy A.M. Global stability and oscillations of dynamical systems describing synchronous electrical machines. Vestnik St. Petersb. Univ. Math., 2012, vol. 45, no. 4, pp. 157–163. https://doi.org/10.3103/S1063454112040048

6.   Konosevich B.I., Konosevich Yu.B. Stability of stationary motions of a gimbal gyro with an electric motor. Mech. Solids, 2013, vol. 48, no. 3, pp. 285–297. https://doi.org/10.3103/S0025654413030059

7.   Leonov G.A. Lyapunov’s second method in the theory of phase synchronization. Appl. Math. Mech., 1976, vol. 40, no. 2, pp. 238–244 (in Russian).

8.   Konosevich, B.I., Konosevich, Y.B. Sufficient global stability condition for a model of the synchronous electric motor under nonlinear load moment. Vestnik St. Petersb. Univ. Math., 2018, vol. 51, pp. 57–65. https://doi.org/10.3103/S1063454118010053

9.   Tricomi F. Integrazione di unequazione differenziale presentasi in electrotechnica. Annali della Roma Schuola Normale Superiore de Pisa, 1933, vol. 2, no. 2, pp. 1–20.

10.   Andronov A.A., Vitt A.A., Khaikin S.E. Teoriya kolebanii [Vibration theory]. Moscow, Nauka Publ., 1981, 568 p.

11.   Konosevich B.I., Konosevich Yu.B. Computer analysis of a model of a synchronous no-current electric motor. Vestnik St. Petersb. Univ. Math., 2023, vol. 56, no. 3, pp. 349–360. https://doi.org/10.1134/S1063454123030056

12.   Konosevich B.I., Konosevich Yu.B. Five means of approximation of critical values of the damping coefficient in the no-current model of a synchronous electric motor. Vestnik St. Petersb. Univ. Math., 2025, vol. 58, no. 2, pp. 277–288.  https://doi.org/10.1134/S106345412570027X

13.   Fihtengolts G.M. Kurs differentsial’nogo i integral’nogo ischisleniya [Course of differential and integral calculus]. Vol. 1. Moscow, Nauka Publ., 1966, 608 p.

Cite this article as: B.I. Konosevich, Yu.B. Konosevich. Estimates of the unbounded separatrices of the differential equation of the current-free model of a synchronous motor. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 188–202.