The article is devoted to the generalization of the well-known Steiner formula for the volume of the $\varepsilon$-neighborhood of a convex body in $n$-dimensional Euclidean space to some classes of nonconvex bodies. This study is limited to the case of two-dimensional Euclidean space, with flat figures located in it and their neighborhoods. Examples of various nonconvex figures on the plane are considered, for the neighborhood of which the Steiner formula is either satisfied or not satisfied. The Steiner formula for calculating the area of the $\varepsilon$-layer of weakly convex Efimov–Stechkin plane figures with a smooth boundary is substantiated. The proof is based on methods of differential geometry and properties of weakly convex sets.
Keywords: Steiner formula, nonconvex figure, area of neighborhood, parallel body, weakly convex set
Received March 17, 2025
Revised April 9, 2025
Accepted April 14, 2025
Funding Agency: The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2025-1549).
Vladimir Nikolaevich Ushakov, Corresponding Member of the Russian Academy of Sciences, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: ushak@imm.uran.ru
Aleksandr Anatol’evich Ershov, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia, Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: ale10919@yandex.ru
Oleg Aleksandrovich Kuvshinov, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: okuvshinov@inbox.ru
REFERENCES
1. Ushakov V.N., Ershov A.A. On the parametric dependence of the volume of integral funnels and their approximations. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2022, vol. 32, iss. 3, pp. 447–462 (in Russian). https://doi.org/10.35634/vm220307
2. Ushakov V.N., Ershov A.A., Ushakov A.V. Control systems depending on a parameter: reachable sets and integral funnels. Mech. Solids, 2022, vol. 57, no. 7, pp. 1672–1688. https://doi.org/10.3103/S0025654422070172
3. Isaacs R. Differential games. NY, John Wiley and Sons, 1965, 384 p. ISBN: 978-0471428602 . Translated to Russian under the title Differentsial’nye igry, Moscow, Mir Publ., 1967.
4. Pontryagin L.S. Linear differential games of pursuit. Math. USSR-Sb., 1981, vol. 40, iss. 3, pp. 285–303. https://doi.org/10.1070/SM1981v040n03ABEH001815
5. Ushakov V.N., Matviychuk A.R., Malev A.G. Problems of dynamics of systems with phase constraints. Izv. IMI UdGU, 2012, vol. 1(39), pp. 138–139 (in Russian).
6. Steiner J. Über parallele Flächen, Monatsber. Preuß. Akad. Wiss., 1840, pp. 114–118; Über parallele Flächen. In book: Gesammelte Werke. Band 2, edt. K. Weterstrass et al., Berlin, NY, De Gruyter, 1882, pp. 171–176. https://doi.org/10.1515/9783111611716.171
7. Minkowski H. Über die Begriffe Länge, Oberfläche und Volumen. Deutsche Math.-Ver., 1901, vol. 9, no. 1, pp. 115–121; In: Gesammelte Abhandlungen, Leipzig, Berlin, Teubner, 1911, vol. 2, pp. 122–127. Available at: https://archive.org/details/gesammelteabhan02weylgoog ; In: Ausgewhlte Arbeiten zur Zahlentheorie und zur Geometrie. Ser.: Teubner-archiv zur Mathematik, Vienna, Springer, 1989, vol. 12, pp. 140–145. https://doi.org/10.1007/978-3-7091-9536-9_6
8. Hadwiger H. Vorlesungen Über Inhalt, Oberfläche und Isoperimetrie. Berlin, Springer-Verlag, 1957, vol. 93, 316 p. Translated to Russian under the title Lektsii ob ob’yome, ploshchadi poverkhnosti i izoperimetrii, Moscow, Nauka Publ., 1966, 416 p.
9. Allendoerfer C.B. Steiner’s formula on a general $S^{n+1}$. Bull. Amer. Math. Soc., 1948, vol. 54, pp. 128–135. https://doi.org/10.1090/S0002-9904-1948-08966-2
10. Hadwiger H. Über die erweiterten Steinerschen Formeln für Parallelmengen. Rev. Mat. Hisp.-Am., 4a ser., 1946, vol. 6, pp. 160–163.
11. Abbena E., Gray A., Vanhecke L. Steiner’s formula for the volume of a parallel hypersurface in a Riemannian manifold. Annali della Scuola Normale Superiore di Pisa – Classe di Sci., ser. 4, 1981, vol. 8, no. 3, pp. 473–493. Available at: www.numdam.org/item/ASNSP_1981_4_8_3_473_0.pdf
12. Ohmann D. Eine verallgemeinerung der steinerschen formel. Math. Ann., 1955, vol. 129, pp. 204–212. https://doi.org/10.1007/BF01362366
13. Leichtweiss K. Konvexe Mengen. 1st ed., Berlin, Heidelberg, Springer-Verlag, 1980, 330 p. ISBN-10: 3540090711 . Translated to Russian under the title Vypuklyye mnozhestva, Moscow, Nauka Publ., 1985, 335 p.
14. Kuvshinov O.A. About the geometry of the Cassini oval, its non-convexity degree and $\varepsilon$-offset layer. Izv. IMI UdGU, 2022, vol. 60, pp. 34–57 (in Russian). https://doi.org/10.35634/2226-3594-2022-60-03
15. Ivanov G.E. Slabo vypuklyye mnozhestva i funktsii: teoriya i prilozheniya [Weakly convex sets and functions: theory and applications]. Moscow, Fizmatlit Publ., 2006, 352 p. ISBN: 978-5-9221-0738-9 .
16. Rashevskii P.K. Kurs differentsial’noi geometrii [A course in differential geometry] (4th ed.). Moscow, GITTL Publ., 1956, 420 p.
Cite this article as: V.N. Ushakov, A.A. Ershov, O.A. Kuvshinov. On the area of the $\varepsilon$-layer of a weakly convex figure. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 2, pp. 280–293.