A.N. Sesekin, A.D. Kandrina, N.V. Gredasova. On the Hyers–Ulam–Rassias stability of nonlinear differential equations containing products of discontinuous and generalized functions and delays ... P. 205-214

The article considers the Hyers–Ulam–Rassias stability property for nonlinear systems of differential equations with a generalized effect on the right-hand side. Since the right-hand side of the systems under consideration is unbounded, the standard definition of the stability property under consideration cannot be used. The formalization of the Hyers–Ulam–Rassias stability concept for nonlinear systems of differential equations with delay and discontinuous trajectories is given. Sufficient conditions are obtained that ensure such stability for a nonlinear system of differential equations with delay and a generalized effect on the right-hand side.

Keywords: Hyers–Ulam–Rassias stability, generalized action, differential equations, discontinuous trajectories

Received February 10, 2025

Revised April 7, 2025

Accepted April 14, 2025

Alexander Nikolaevuch Sesekin, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: a.n.sesekin@urfu.ru

Anna Dmitrievna Kandrina, Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: anna-kandrina@mail.ru

Nadezda Viktorovna Gredasova, Cand. Sci. (Phys-Math), Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: gredasovan@mail.ru

REFERENCES

1.   Ulam S. A collection of mathematical problems. NY, Intersci. Publ., 1960, 150 p. Translated to Russian under the title Nereshennyye matematicheskiye zadachi, Moscow, Nauka Publ., 1964, 168 p.

2.   Hyers D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA, 1941, vol. 27, no. 4, pp. 222–224. https://doi.org/10.1073/pnas.27.4.222

3.   Rassias Th.M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 1978, vol. 72, pp. 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1

4.   Alsina C., Ger R. On some inequalities and stability results related to the exponential function. J. Inequal. Appl., 1998, vol. 2, pp. 373–380.

5.   Rus I.A. Ulam stability of ordinary differential equations. Stud. Univ. Babeș-Bolyai, Math., 2009, vol. 54, no. 4, pp. 125–133.

6.   Brzdec J., Cadariu L., Cieplinski K. Fixed point theory and the Ulam stability. J. Funct. Spaces, 2014, vol. 2014, art. no. 829419, pp. 1–16. https://doi.org/10.1155/2014/829419

7.   Arutyunov A.V. The coincidence point problem for set-valued mappings and Ulam–Hyers stability. Dokl. Math., 2014, vol. 89, no. 2, pp. 188–191. https://doi.org/10.1134/S1064562414020197

8.   Otrocol D., Ilea V. Ulam ctability for a delay differential equation. Cent. Eur. J. Math., 2013, vol. 11, pp. 1296–1303. https://doi.org/10.2478/s11533-013-0233-9

9.   Sesekin A.N., Kandrina A.D., Gredasova N.V. Hyers–Ulam–Rassias stability of linear systems of differential equations with generalized action and delay. Russ. Math., 2024, vol. 68, no. 1, pp. 70–81.  https://doi.org/10.3103/S1066369X24700993

10.   Sesekin A.N., Kandrina A.D. Hayers–Ulam–Rassias stability of nonlinear differential equations with discontinuous trajectories and delay. In: Proc. Inter. Conf. devoted to the 100th anniversary of Academician N.N.Krasovskii “Dynamic systems: stability, control, differential games”, Yekaterinburg, 2024, pp. 279–282 (in Russian).

11.   Fetisova Yu.V., Sesekin A.N. Discontinuous solutions of differential equations with time delay. Wseas trans. Syst., 2005, vol. 4, no. 5, pp. 487–492.

12.   Samoylenko A.M., Perestyuk N.A. Differentsial’nyye uravneniya s impul’snym vozdeystviyem [Differential equations with impulse action]. Kyiv, Vishcha Shkola Publ., 1987, 288 p.

13.   Zada A., Faisal S., Li Y. On the Hyers–Ulam Stability of first-order impulsive delay differential equations. Hindawi Publ. Corporation J. Func. Spaces, 2016, vol. 2016, art. no. 8164978, pp. 1–6.  http://doi.org/10.1155/2016/8164978

14.   Bellman R., Cooke K.L. Differential-difference equations. London, NY, Acad. Press, 1963, 462 p. Translated to Russian under the title Differentsial’no-raznostnyye uravneniya, Moscow, Mir Publ., 1967, 548 p.

15.   Krasovskii N.N. Teoriya upravleniya dvizheniem [Motion control theory], Moscow, Nauka Publ., 1968, 475 p.

16.   Sesekin A.N., Kandrina A.D. Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hend side. Ural Math. J., 2023, vol. 9, no. 1, pp. 147–152. https://doi.org/10.15826/umj.2023.1.013

17.   Lukoyanov N.Yu. Funktsional’nyye uravneniya Gamil’tona—Yakobi i zadachi upravleniya s nasledstvennoy informatsiyey [Hamilton–Jacobi functional equations and control problems with hereditary information]. Yekaterinburg, Ural. Federal. Univ. Publ., 2011, 242 p.
ISBN: 978-5-321-01877-4 .

18.   Zavalishchine S.T., Sesekin A.N. Dynamic impulse systems: theory and applications. Ser.: Mathematics and Its Applications (MAIA), vol. 394. Dolrbrecht, Springer, 1997, 260 p. 
https://doi.org/10.1007/978-94-015-8893-5

Cite this article as: A.N. Sesekin, A.D. Kandrina, N.V. Gredasova. On the Hyers–Ulam–Rassias stability of nonlinear differential equations containing products of discontinuous and generalized functions and delays. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol 31, no. 2, pp. 205–214.