A.G. Ghentsov. Attraction sets in abstract reachability problems ... P. 294-315

The abstract reachability problems in topological space with constraints of asymptotic nature (CAN) are considered; given CAN can arise (in particular) through the consistent weakening of one or more standard constraints. The above-mentioned CAN are generated by a nonempty family of sets in the initial space of usual solutions (controls). As a result of the action of CAN, we can (in the above-mentioned cases) consider attraction set being the limit with respect to “usual” reachable sets (RS); in control problems, a given RS may correspond to reachability domains under one or more concrete constraints on the control choice.

Keywords: attainability problem, attraction set, filter

Received January 20, 2024

Revised February 11, 2025

Accepted February 11, 2025

Published online March 20, 2025

Alexander Georgievich Chentsov, Dr. Phys.-Math. Sci, RAS Corresponding Member, Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: chentsov@imm.uran.ru

REFERENCES

1.   Warga J. Optimal control of differential and functional equations. NY, Acad. Press, 1972, 531 p.  https://doi.org/10.1016/C2013-0-11669-8 . Translated to Russian under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami, Moscow, Nauka Publ., 1977, 620 p.

2.   Gamkrelidze R.V. Principles of optimal control theory. NY, Springer, 1978, 175 p.  https://doi.org/10.1007/978-1-4684-7398-8 . Original Russian text was published in Gamkrelidze R.V., Osnovy optimal’nogo upravleniya, Tbilisi, Tbilisi Univ. Publ., 1975, 230 p.

3.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text was published in Krasovskii N. N., Subbotin A. I. Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.

4.   Duffin R.J. Infinite programs. In: Linear inequalities and related systems, eds. H. W. Kuhn, A. W. Tucker, Princeton, Princeton Univ. Press, 1957, Ch. 6. https://doi.org/10.1515/9781400881987-007 . Translated to Russian under the title Beskonechnye programmy. In: Lineinye neravenstva i smezhnye voprosy, Moscow, Inostr. Liter. Publ., 1959.

5.   Golstein E.G. Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya [Duality theory in mathematic programming and its applications]. Moscow, Nauka Publ., 1971, 351 p.

6.   Ioffe A.D., Tikhomirov V.M. Theory of extremal problems. Elsevier Sci. Publ., 2009, 459 p. ISBN: 9780080875279 . Original Russian text published in Ioffe A. D., Tikhomirov V. M. Teoriya ekstremal’nykh zadach, Moscow, Nauka Publ., 1974, 480 p.

7.   Krasovskii N.N. Teoriya upravleniya dvizheniem [Motion control theory]. Moscow, Nauka Publ., 1968, 475 p.

8.   Chentsov A.G. Finitely additive measures and relaxations of extremal problems. NY, Consultants Bureau, Springer, 1996, 244 pp. ISBN: 9780306110382 .

9.   Chentsov A.G. Asymptotic attainability. Dordrecht, Springer, 1997, 322 p.
https://doi.org/10.1007/978-94-017-0805-0

10.   Chentsov A.G., Morina S.I. Extensions and relaxations. Dordrecht, Springer, 2002, 408 p.  https://doi.org/10.1007/978-94-017-1527-0

11.   Chentsov A.G. Konechno-additivnyye mery i rasshireniya abstraktnykh zadach upravleniya [Finite-additive measures and extensions of abstract control problems]. Tbilisi, Acad. Sci. Georgia, In-te of Cybernetics Publ., 2004. Ser. Modern Math. and Its Appl., vol. 17, Optimal control.

12.   Chentsov A.G., Baklanov A.P. On the question of construction of an attraction set under constraints of asymptotic nature. Proc. Steklov Inst. Math. (Suppl.), 2015, vol. 291, suppl. 1, S40–S55. https://doi.org/10.1134/S0081543815090035

13.   Chentsov A.G., Baklanov A.P. On an asymptotic analysis problem related to the construction of an attainability domain. Proc. Steklov Inst. Math., 2015, vol. 291, pp. 279–298. https://doi.org/10.1134/S0081543815080222

14.   Chentsov A.G., Baklanov A.P., Savenkov I.I. An attainability problem with constraints of an asymptotic nature. Izv. Inst. Mat. Inform., 2016, no. 1(47), pp. 54–118 (in Russian).

15.   Chentsov A.G. Ul’trafil’try i maksimal’nyye stseplennyye sistemy mnozhestv [Ultrafilters and maximal linked systems of sets]. Moscow, Lenand, 2024, 416 p. ISBN: 9785951944160 .

16.   Engelking R. General topology. Warsaw, PWN, 1977. Translated to Russian under the title Obshchaya topologiya, Moscow, Mir Publ., 1986, 751 p.

17.   Bourbaki N. Topologie générale: structures topologiques, structures uniformes. Paris, Hermann, 1968. Translated to Russian under the title Obshchaya topologiya: osnovnye struktury, Moscow, Nauka Publ., 1968, 272 p.

18.   Kuratowski K., Mostowski A. Set theory. Warszawa, PWN Polish Scient. Publ., 1967. Translated to Russian under the title Teoriya mnozhestv, Moscow, Mir Publ., 1970, 416 p.

19.   Bulinskii A.V., Shiryaev A.N. Teoriya sluchainykh protsessov [The theory of stochastic processes]. Moscow, Fizmatlit Publ., 2005, 402 p. ISBN: 978-5-9221-0335-0 .

20.   Chentsov A.G. Closed mappings and construction of extension models. Proc. Steklov Inst. Math. (Suppl.), 2023, vol. 323, suppl. 1, pp. S56–S77.  https://doi.org/10.1134/S0081543823060056

Cite this article as:  A.G. Ghentsov. Attraction sets in abstract reachability problems. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 2, pp. 294–315