A.V. Ivanov. On intermediate values of quantization dimensions of idempotent measures ... P. 139-148

The quantization dimension $\dim_{\cal F}(\xi)$ is defined for any point $\xi$ of spaces of the form ${\cal F}(X)$, where ${\cal F}$ is a half-normal metrizable functor and $X$ is a metric compact space. An example of a quantization dimension is the classical box dimension $\dim_B$ of closed subsets of a compact space $X$. In this work, the functor $I$ of idempotent measures or Maslov measures is considered as ${\cal F}$. It is known that, for any idempotent measure $\mu\in I(X)$, its (upper and lower) quantization dimensions do not exceed the upper and lower box dimensions, respectively, of the space $X$. These inequalities motivate the question about intermediate values of the quantization dimensions of idempotent measures. The following theorem is proved: on any metric compact space $X$ of dimension $\dim_BX=a<\infty$, for any numbers $c\in[0,a]$ and $b\in[0,a/2)\cap[0 ,c]$, there is an idempotent measure whose lower quantization dimension is $b$ and whose upper quantization dimension is $c$. As follows from this theorem, if a metric compact space $X$ has positive box dimension, then $X$ always has an idempotent measure with a positive lower quantization dimension. Moreover, it is known that a similar statement for the box dimension is not true in the general case, since there exists a metric compact space whose box dimension is $1$ such that all of its proper closed subsets are zero-dimensional in the sense of the lower box dimension.

Keywords: idempotent measure, box dimension, quantization dimension, metrizable functor

Received February 21, 2024

Revised May 4, 2024

Accepted May 13, 2024

Funding Agency: This work was supported by the federal budget as part of a state task to the Karelian Research Center of the Russian Academy of Sciences (the Institute of Applied Mathematical Research).

Aleksandr Vladimirovich Ivanov, Dr. Phys.-Math. Sci., Prof., Institute of Applied Mathematical Research of Karelian Research of the Centre Russian Academy of Sciences, Petrozavodsk, 185910, Russia, e-mail: alvlivanov@krc.karelia.ru

REFERENCES

1.   Ivanov A.V. On quantization dimensions of idempotent probability measures. Topology and its Appl., 2022, vol. 306, art. no. 107931. doi: 10.1016/j.topol.2021.107931

2.   Pontryagin L., Shnirelman L. On one metric property of dimension. Ann. Math., 1932, vol. 33, pp. 156–162.

3.   Pesin Ya.B. Dimension theory in dynamical systems: contemporary views and applications, Chicago, Univ. Chicago Press, 1997, 304 p. ISBN: 0-226-66222-5 . Translated to Russian under the title Teoriya razmernosti i dinamicheskiye sistemy: sovremennyy vzglyad i prilozheniya, Moscow; Izhevsk, Institut Komp’yut. Issledov., 2002, 404 p. ISBN: 5-93972-261-X .

4.   Graf S., Luschgy H. Foundations of quantization for probability distributions. Berlin, Heidelberg, Springer-Verlag, 2000, 230 p. doi: 10.1007/BFb0103945

5.   Litvinov G.L., Maslov V.P., Shpiz G.B. Idempotent functional analysis: an algebraic approach. Math. Notes, 2001, vol. 69, no. 5, pp. 696–729. doi: 10.1023/A:1010266012029

6.   Zarichnyi M.M. Spaces and maps of idempotent measures. Izv. Math., 2010, vol. 74, no. 3, pp. 481–499. doi: 10.1070/IM2010v074n03ABEH002495

7.   Shchepin E.V. Functors and uncountable powers of compacta. Russian Math. Surv., 1981, vol. 36, no. 3, pp. 1–71. doi: 10.1070/RM1981v036n03ABEH004247

8.   Bazylevych L., Repovš D., Zarichny M. Spaces of idempotent measures of compact metric spaces. Topology Appl., 2010, vol. 157, no. 1, pp. 136–144. doi: 10.1016/j.topol.2009.04.040

9.   Fedorchuk V.V. Triples of infinite iterates of metrizable functors. Math. USSR-Izv., 1991, vol. 36, no. 2, pp. 411–433. doi: 10.1070/IM1991v036n02ABEH002028

10.   Fedorchuk V.V. Compact spaces without intermediate dimensions. Sov. Math., Dokl., 1972, vol. 14, pp. 1808–1811.

11.   Ivanov A.V. On the intermediate values of the box dimensions. Sib. Math. J., 2023, vol. 64, no. 3, pp. 593–597. doi: 10.1134/S0037446623030072

12.   Fedorchuk V., Todorčević S. Cellularity of covariant functors. Topology Appl., 1997, vol. 76, pp. 125–150.

13.   Akian M. Densities of idempotent measures and large deviations. Trans. of Amer. Math. Soc., 1999, vol. 351, no. 11, pp. 4515–4543. doi: 10.1090/S0002-9947-99-02153-4

Cite this article as: A.V. Ivanov. On intermediate values of quantization dimensions of idempotent measures. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 139–148.