A.A. Davydov, A.S. Platov, D.V. Tunitsky. Existence of an optimal stationary solution in the KPP model under nonlocal competition ... P. 113-121

We consider a resource distributed on a compact closed connected manifold without edge, for example, on a two-dimensional sphere representing the Earth surface. The dynamics of the resource is governed by a model of the Fisher–Kolmogorov–Petrovsky–Piskunov type with coefficients in the reaction term depending on the total amount of the resource, which makes the model equation nonlocal. Under natural assumptions about the model parameters, it is shown that there is at most one nontrivial nonnegative stationary distribution of the resource. Moreover, in the case of constant distributed resource harvesting, there is a harvesting strategy under which such a distribution maximizes the time-averaged resource harvesting over the stationary states.

Keywords: KPP model, stationary solution, time-averaged harvesting, optimal strategy

Received March 24, 2024

Revised June 13, 2024

Accepted June 17, 2024

Alexey Alexandrovich Davydov, Dr. Phys.-Math. Sci., Prof., Lomonosov Moscow State University, Moscow, 119992 Russia; International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria, e-mail: davydov@mi-ras.ru

Anton Sergeevich Platov, Cand. Sci. (Phys.-Math.), National University of Science and Technology MISIS, Moscow, 119049 Russia, e-mail: platovmm@mail.ru

Dmitry Vasilievich Tunitsky, Dr. Phys.-Math. Sci., V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, e-mail: dtunitsky@yahoo.com

REFERENCES

1.   Berestycki H., Francois H., Roques L. Analysis of the periodically fragmented environment model: I Species persistence. J. Math. Biol., 2005, vol. 51, pp. 75–113. doi: 10.1007/s00285-004-0313-3

2.   Berestycki H., Francois H., Roques L. Analysis of the periodically fragmented environment model: II–biological invasions and pulsating travelling fronts. J. Math. Pures Appl., 2005, vol. 84, no. 8, pp. 1101–1146. doi: 10.1016/j.matpur.2004.10.006

3.   Daners D., Medina P. Abstract evolution equations, periodic problems, and applications. Harlow: Longman Scientific & Technical, 1992, Pitman Research Notes in Math. Ser., vol. 279, 249 p.

4.   Henderson K., Loreau M. An ecological theory of changing human population dynamics. People Nature, 2019, vol. 1, no. 1, pp. 31–43. doi: 10.1002/pan3.8

5.   Hess P. Periodic-parabolic boundary value problems and positivity. NY: John Wiley & Sons, 1991, Pitman Research Notes in Math. Ser., vol. 247, 139 p. ISBN: 0-582-06478-3 .

6.   Cohen P.J., Foale S.J. Sustaining small-scale fisheries with periodically harvested marine reserves. Marine Policy, 2013, vol. 37, no. 1, pp. 278–287. doi: 10.1016/j.marpol.2012.05.010

7.   Pethame B. Parabolic equations in biology: growth, reaction, movement and diffusion. Cham, Springer, 2015, Ser. Lecture Notes Math. Modelling Life Sci., 199 p. doi: 10.1007/978-3-319-19500-1

8.   Undersander D., Albert B., Cosgrove D., Johnson D., Peterson P. Pastures for profit: A guide to rotational grazing (A3529). Madison: Cooperative Extension Publ., University of Wisconsin-Extension, 2002, 43 p.

9.   Verhulst P.F. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique (Ghent), 1838, vol. 10, pp. 113–121.

10.   Belyakov A.O., Davydov A.A. Efficiency optimization for the cyclic use of a renewable resource. Proc. Steklov Inst. Math. (Suppl.), 2017, vol. 299, suppl. 1, pp. S14–S21. doi: 10.1134/S0081543817090036

11.   Belyakov A.O., Davydov A.A., Veliov V.M. Optimal cyclic exploitation of renewable resources. J. Dyn. Control Syst., 2015, vol. 21, no. 3, pp. 475–494. doi: 10.1007/s10883-015-9271-x

12.   Davydov A.A., Vinnikov E.V. Optimal cyclic dynamic of distributed population under permanent and impulse harvesting. In: Dynamic Control and Optimiz. (DCO 2021), Ser. Springer Proc. Math. & Stat., 2023, vol. 407, pp. 101–112. doi: 10.1007/978-3-031-17558-9_5

13.   Du Y., Peng R. The periodic logistic equation with spatial and temporal degeneracies. Trans. Amer. Math. Soc., 2012, vol. 364, no. 11, pp. 6039–6070. doi: 10.1090/S0002-9947-2012-05590-5

14.   Medina P.K. Feedback stabilizability of time-periodic parabolic equations. In: Dynamics Reported (eds.) C.K.R.T. Jones, U. Kirchgraber, H.O. Walther, Berlin, Heidelberg, Springer, 1996, Ser. Expositions in Dynamical Systems, vol. 5, pp. 26–98. doi: 10.1007/978-3-642-79931-0_2

15.   Tunitsky D.V. Exploitation of renewable resource distributed on the surface of the Earth. In: Abstracts Int. Conf. “Systems analysis: modeling and control” in memory of academician A. V. Kryazhimskiy. Moscow, Lomonosov Moscow State University Publ., MAKS Press Publ., 2024, p. 113–114 (in Russian). doi: 10.29003/m3791.978-5-317-07128-8

16.   Kolmogorov A.N., Petrovsky I.G., Piskunov N.S. Study of the equation of diffusion coupled with an increase in matter, and its application to a biological problem. Byulleten’ MGU. Ser. A. Matematika i Mekhanika, 1937, vol. 1, no. 6, pp. 1–26.

17.   Fisher R.A. The wave of advance of advantageous genes. Annals of Eugenics, 1937, vol. 7, iss. 4, pp. 355–369. doi: 10.1111/j.1469-1809.1937.tb02153.x

18.   Fourier J.B.J. Thе́orie Analytique de la Chaleur, Paris, F. Didot Publ., 1822, 674 p.

19.   Vinnikov E.V., Davydov A.A., Tunitsky D.V. Existence of a maximum of time-averaged harvesting in the KPP model on sphere with permanent and impulse harvesting. Dokl. Math., 2023, vol. 108, no. 3, pp. 472–476. doi: 10.1134/S1064562423701387

20.   Tunitsky D.V. On solvability of semilinear second-order elliptic equations on closed manifolds. Izv. Math., 2022, vol. 86, no. 5, pp. 925–942. doi: 10.1070/IM9261

21.   Tunitsky D.V. On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds. Izv. Math., 2023, vol. 87, no. 4, pp. 817–834. doi: 10.4213/im9354e

22.   Davydov A.A., Platov A.S. Optimal stationary solution in forest management model by accounting intra-species competition. Moscow Math. J., 2012, vol. 12, no. 2, pp. 269–273. doi: 10.17323/1609-4514-2012-12-2-269-273

23.   Davydov A.A., Platov A.S. Optimal exploitation of two competing size-structured populations. Proc. Steklov Inst. Math. (Suppl.), 2014, vol. 287, suppl. 1, pp. S49–S54. doi: 10.1134/S0081543814090053

24.   Tarniceriu O.C., Veliov V.M. Optimal control of a class of size-structured systems. In: Large-Scale Scientific Computing: Proc. (eds.) I. Lirkov, S. Margenov, J. Wasniewski. Berlin, Heidelberg, Springer, 2007, Ser. Lecture Notes in Computer Science, vol. 4818, pp. 366–373.
doi: 10.1007/978-3-540-78827-0_41

25.   Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Linear and quasi-linear equations of parabolic type. Providence, RI: American Math. Soc., 1968, Ser. Translations of Mathematical Monographs, vol.  23, 648 p. Original Russian text published in Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Lineinye i kvazilineinye uravneniya parabolicheskogo tipa. Moscow, Nauka Publ., 1967, 736 p.

26.   Belyakov A.O., Davydov A.A. Optimal cyclic harvesting of a distributed renewable resource with diffusion. Proc. Steklov Inst. Math. (Suppl.), 2021, vol. 315, suppl. 1, pp. S56–S64. doi: 10.1134/S0081543821050059

27.   Aseev S.M., Kryazhimskii A.V. The Pontryagin maximum principle and optimal economic growth problems. Proc. Steklov Inst. Math. (Suppl.), 2007, vol. 257, pp. 1–255. doi: 10.1134/S0081543807020010

28.   Aseev S.M., Veliov V.M. Another view of the maximum principle for infinite-horizon optimal control problems in economics. Russian Math. Surv., 2019, vol. 74, no. 6, pp. 963–1011. doi: 10.1070/RM9915

29.   Davydov A.A., Nassar A.F. On a stationary state in the dynamics of a population with hierarchical competition. Russian Math. Surv., 2014, vol. 69, no. 6, pp. 1126–1128. doi: 10.1070/rm2014v069n06abeh004930

Cite this article as: A.A. Davydov, A.S. Platov, D.V. Tunitsky. Existence of an optimal stationary solution in the KPP model under nonlocal competition. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 113–121.