S.N. Burian. Strong constraints in the dynamics of systems with geometric singularities ... P. 53-67

The dynamics of holonomic mechanical systems with geometric singularities of the configuration space, such as branch points, is considered. Classical methods for deriving equations of motion are not applicable in neighborhoods of singular points because there are no generalized coordinates. A new method for analyzing the dynamics of systems with singularities is proposed. Some holonomic (rigid) constraints are replaced by elastic ones (springs). As a result, the singularity disappears, but the number of degrees of freedom of the system increases. With an unlimited increase in spring stiffness, the trajectory of a system with elastic constraints should deviate less and less from the configuration space for the original system with holonomic constraints. A hypothesis has been put forward about the motion of a mechanical system whose configuration space could be represented as a union of two smooth manifolds. The limit transition for the spring stiffness is considered using a specific example. For this purpose, a singular pendulum with a spring is constructed. This two-degree mechanical system can be explicitly parameterized, which simplifies its analytical and numerical modeling. In numerical experiments, the motion of the system is consistent with the hypothesis.

Keywords: constraint realization, constraint reactions, manifolds with singularities, singular point, holonomic constraints, Lagrange multipliers

Received January 13, 2024

Revised May 4, 2024

Accepted May 6, 2024

Sergey Nikolaevich Burian, Cand. Sci (Phys.-Math.), State Research Institute of Applied Problems, St.Petersburg, 191167 Russia, e-mail: burianserg@yandex.ru

REFERENCES

1.   Painlevе́ P. Cours de la facultе́ des sciences de Paris, cours complе́mentaire de mе́canique rationnelle. 1895. 141 p. Translated to Russian under the title: Penleve P. Lektsii o trenii [Lectures on friction], Moscow, Gostekhizdat, 1954. 316 p.

2.   Mukharlyamov R.G., Deressa C.T. Dynamic equations of controlled mechanical system with redundant holonomic constraints. Vestn. Kazan. Tekhnol. Univ., 2014, vol. 17, no. 11. pp. 236–242.

3.   Wojtyra M., Frączek J. Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody Syst Dyn., 2013, vol. 30, pp. 153–171. doi: 10.1007/s11044-013-9352-0

4.   Flores P., Pereira R., Machado M., Seabra E. Investigation on the Baumgarte stabilization method for dynamic analysis of constrained multibody systems. In: Proc. 2nd Eur. Conf. on Mechanism Science (EUCOMES 08), Cassino, Italy, Sept. 17–20, 2008 (Springer-Verlag, Dordrecht, 2009), pp. 305–312. doi: 10.1007/978-1-4020-8915-2_37

5.   Zhuravlev V.F. Notion of constraint in analytical mechanics. Rus. J. Nonlin. Dyn, 2012, vol. 8. no. 4, pp. 853–860 (in Russian).

6.   Arnold V.I., Kozlov V.V., Neistadt A.I. Mathematical aspects of classical and celestial mechanics. Springer Berlin, Heidelberg, 2010. 505 p. ISBN: 978-3-540-28246-4

7.   Rubin H., Ungar P. Motion under a strong constraining force. Communications on pure and applied mathematics, 1957, vol. 10, pp. 65–87. doi: 10.1002/CPA.3160100103

8.   Kozlov V.V., Neistadt A.I. On the implementation of holonomic connections. Applied mathematics and mechanics, 1990, vol. 54, no. 5, pp. 858–861 (in Russian).

9.   Takens F. Motion under influence of a strong constraining force. Global theory of Dynamics Systems, Berlin, Springer-Verlag, 1980, pp. 425–445. doi: 10.1007/BFb0087006

10.   Karapetian A.V. On realizing nonholonomic constraints by viscous friction forces and celtic stones stability. J. Appl. Math. Mech., 1981, vol. 45, no. 1. pp 30–36. doi: 10.1016/0021-8928(81)90006-X

11.   Zegzhda S. A., Soltakhanov Sh.S., Yushkov M.P. Mechanics of non-holonomic systems. A new class of control systems. Berlin, Heidelberg, Springer, 2010, 332 p. ISBN 978-3-642-09938-0 .

12.   Polyakhov N.N, Yushkov M.P., Zegzhda S.A., Tovstik P.E. Rational Appl. Mech., Volume 1. Complete general course for students of engineering. Cham, Springer, 2021, 520 p. ISBN 978-3-030-64063-7 .

13.   Zhuravlev V.F. Osnovy teoreticheskoy mekhaniki [Fundamentals of theoretical mechanics]. Moscow, Fizmatlit, 2001. 320 p. (in Russian). ISBN 5-94052-041-3 .

14.   Burian S.N. Behaviour of the pendulum with a singular configuration space. Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. , 2017, vol. 4 (62), no 4, pp. 541–551 (in Russian). doi: 10.21638/11701/spbu01.2017.402

15.   Burian S.N., Kalnitsky V.S. On the motion of one-dimensional double pendulum. AIP Conference Proceedings, 2018, vol. 1959, art. no. 030004. doi: 10.1063/1.5034584

16.   Burian S.N. Reaction forces of singular pendulum. Vestnik St. Petersburg University, Mathematics, 2022, vol. 55, pp. 192–202. doi: 10.1134/S1063454122020054

Cite this article as: S.N. Burian. Strong constraints in the dynamics of systems with geometric singularities. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 53–67.