A.Kh. Khachatryan, Kh.A. Khachatryan, H.S. Petrosyan. Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type ... P. 249-269

The work is devoted to the study of questions of the existence, nonexistence, and uniqueness of a solution to one class of integral equations of the Hammerstein–Stieltjes type on the whole line with a concave and monotone nonlinearity. This class of equations has direct applications in various areas of modern natural science. In particular, depending on the representation of the corresponding kernel (or subkernel) and nonlinearity, equations of this kind are found in probability theory (Markov processes), p-adic string theory, the theory of radiative transfer in spectral lines, epidemiology, and the kinetic theory of gases and plasma. Under certain constraints on the kernel and on the nonlinearity of the equation, a constructive theorem for the existence of a continuous positive bounded solution is proved. A method for constructing an approximate solution is also outlined, the essence of which is to obtain a uniform estimate of the difference between the constructed solution and the corresponding successive approximations; the right-hand side of this estimate tends to zero at a rate of some geometric progression. In the case where the kernel of the equation satisfies the stochasticity condition, the absence of a nontrivial continuous bounded solution is proved. In the class of nonnegative nontrivial continuous bounded functions, a uniqueness theorem is also established. Using some geometric estimates for concave functions, the asymptotic behavior of the constructed solution at infinity is studied. At the end of the article, to illustrate the results obtained, practical examples of the kernel (subkernel) and nonlinearity of the equation under study are given.

Keywords: bounded solution, monotonicity, subkernel, concavity, successive approximations

Received January 10, 2024

Revised January 29, 2024

Accepted February 5, 2024

Funding Agency: The research of the first and third authors was supported by the Science Committee of the Ministry of Education, Science, Culture, and Sport of the Republic of Armenia (project no. 21T-1A047). The research of second author was supported by the Science Committee of the Ministry of Education, Science, Culture, and Sport of the Republic of Armenia (project no. 23RL-1A027).

Aghavard Khachaturovich Khachatryan, Dr. Phys.-Math. Sci., Prof., Armenian National Agrarian University, 0009, Yerevan; Institute of Mathematics NAS, 0019, Yerevan, Republic of Armenia, e-mail: aghavard59@mail.ru

Khachatur Aghavardovich Khachatryan, Dr. Phys.-Math. Sci., Prof., Yerevan State University, 0025, Yerevan; Institute of Mathematics NAS, 0019, Yerevan, Republic of Armenia, e-mail: khachatur.khachatryan@ysu.am

Haykanush Samvelovna Petrosyan, Cand. Sci. (Phys.-Math.), Armenian National Agrarian University, 0009, Yerevan, Republic of Armenia, e-mail: Haykuhi25@mail.ru

REFERENCES

1.   Engibaryan N.B. Convolution equations containing singular probability distributions. Izvestiya: Math., 1996, vol. 60, no. 2, pp. 251–279. doi: 10.1070/IM1996v060n02ABEH000070

2.   Spitzer F. The Wiener–Hopf equation, whose kernel is a probability density. Duke Math. J., 1957, vol. 24, no. 3,pp. 327–343. doi: 10.1215/S0012-7094-57-02439-0

3.   Feller W. An introduction to probability theory and its applications, vol. 2, John Wiley & Sons, 1966, 626 p. Translated to Russian under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, vol. 2, Moscow, Mir Publ., 1967.

4.   Vladimirov V.S., Volovich Ya.I. Nonlinear dynamics equation in p-adic string theory. Theoret. and Math. Phys., 2004, vol. 138, no. 3, pp. 297–309. doi: 10.1023/B:TAMP.0000018447.02723.29

5.   Vladimirov V.S. The equation of the p-adic open string for the scalar tachyon field. Izvestiya: Math., 2005, vol. 69, no. 3, pp. 487–512. doi: 10.1070/IM2005v069n03ABEH000536

6.   Vladimirov V.S. Nonlinear equations for p-adic open, closed, and open-closed strings. Theoret. and Math. Phys., 2006, vol. 149, no. 3, pp. 1604–1616. doi: 10.1007/s11232-006-0144-z

7.   Vladimirov V.S. Nonexistence of solutions of the p-adic strings. Theoret. and Math. Phys., 2013, vol. 174, no. 2, pp. 178–185. doi: 10.1007/s11232-013-0015-3

8.   Zhukovskaya L.V. Iterative method for solving nonlinear integral equations describing rolling solutions in string theory. Theoret. and Math. Phys., 2006, vol. 146, no. 3, pp. 335–342. doi: 10.1007/s11232-006-0043-3

9.   Aref’eva I.Ya., Volovich I.V. Cosmological daemon. J. High Energy Physics, 2011, vol. 2011, no. 8, art. no. 102. doi: 10.1007/JHEP08(2011)102

10.   Khachatryan A.Kh., Khachatryan Kh.A. Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave. Theoret. and Math. Phys., 2016, vol. 189, no. 2, pp. 1609–1623. doi: 10.1134/S0040577916110064

11.   Cercignani C. The Boltzmann equation and its applications, NY, Springer-Verlag, 1988, 455 p. doi: 10.1007/978-1-4612-1039-9 .

12.    Kogan M.N. Rarefied gas dynamics, New York, Springer, 1969, 515 p. doi: 10.1007/978-1-4899-6381-9 . Original Russian text published in Kogan M.N., Dinamika razrezhennogo gaza, Moscow, Nauka Publ., 1967, 440 p.

13.   Engibaryan N.B. On a problem in nonlinear radiative transfer. Astrophysics, 1966, vol. 2, no. 1, pp. 12–14. doi: 10.1007/bf01014505

14.   Atkinson C., Reuter G.E.H. Deterministic epidemic waves. Math. Proc. Cambridge Philos. Soc., 1976, vol. 80, no. 2, pp. 315–330. doi: 10.1017/S0305004100052944

15.   Diekmann O., Kaper H.G. On the bounded solutions of a nonlinear convolution equation. Nonlinear Anal.: Theory, Method and Appl., 1978, vol. 2, no. 6, pp. 721–737. doi: 10.1016/0362-546X(78)90015-9

16.   Diekmann O. Thresholds and travelling waves for the geographical spread of infection. J. Math. Biology, 1978, vol. 6, no. 2, pp. 109–130. doi:10.1007/BF02450783

17.   Law R., Dieckmann U. Moment approximations of individual-based models. In: The geometry of ecological interactions: Simplifying spatial complexity, eds. U.Dieckmann, R.Law, J.A.J.Metz, Cambridge, Cambridge Univ. Press, 2000, pp. 252–270. doi: 10.1017/CBO9780511525537.017

18.   Dieckmann U., Law R. Relaxation projections and the method of moments. In: The geometry of ecological interactions: Simplifying spatial complexity, eds. U.Dieckmann, R.Law, J.A.J.Metz, Cambridge, Cambridge Univ. Press, 2000, pp. 412–455. doi: 10.1017/CBO9780511525537.025

19.   Davydov A.A., Danchenko V.I., Zvyagin M.Yu. Existence and uniqueness of a stationary distribution of a biological community. Proc. Steklov Inst. Math., 2009, vol. 267, pp. 40–49. doi: 10.1134/S0081543809040038

20.   Sargan J.D. The distribution of wealth. Econometrica, 1957, vol. 25, no. 4, pp. 568–590. doi: 10.2307/1905384

21.   Khachatryan Kh.A. On the solubility of certain classes of non-linear integral equations in p-adic string theory. Izvestiya: Math., 2018, vol. 82, no. 2, pp. 407–427. doi: 10.1070/IM8580

22.   Andriyan S.M., Kroyan A.K., Khachatryan Kh.A. On solvability of class of nonlinear integral equations in p-adic string theory. Ufa Math. J., 2018, vol. 10, no. 4, pp. 12–23. doi: 10.13108/2018-10-4-12

23.   Khachatryan Kh.A. On the solvability of a boundary value problem in p-adic string theory. Trans. Moscow Math. Soc., 2018, pp. 101–115. doi: 10.1090/mosc/281

24.   Khachatryan Kh.A. Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity. Izvestiya: Math., 2020, vol. 84, no. 4, pp. 807–815. doi: 10.1070/IM8898

25.   Petrosyan H.S., Khachatryan Kh.A. Uniqueness of the solution of a class of integral equations with sum-difference kernel and with convex nonlinearity on the positive half-line. Math. Notes, 2023, vol. 113, no. 4, pp. 512–524. doi: 10.1134/S0001434623030239

26.   Khachatryan Kh.A., Petrosyan H.S. On a class of integral equations with convex nonlinearity on semiaxis. J. Contemp. Math. Anal., 2020, vol. 55, pp. 42–53. doi: 10.3103/S1068362320010057

27.   Khachatryan Kh.A., Petrosyan H.S. On the solvability of a class of nonlinear Hammerstein–Stieltjes integral equations on the whole line. Proc. Steklov Inst. Math., 2020, vol. 308, pp. 238–249. doi: 10.1134/S0081543820010198

28.   Zorich V.A. Mathematical analysis. Vol. 1: Berlin, Heidelberg, Springer, 2004, 574 p. ISBN: 978-3-540-87451-5 . Vol. 2: Berlin, Heidelberg, Springer, 2016, 720 p. doi: 10.1007/978-3-662-48993-2 . Original Russian text published in Zorich V.A., Matematicheskii analiz, Moscow, Nauka Publ., 1984, 640 p.

29.   Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis, vol. 1, 2, Mineola, New York, Dover Publ., 1999, 288 p. ISBN: 0486406830 . Original Russian text published in Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional’nogo analiza, Moscow, Nauka Publ., 1976, 544 p.

30.   Rudin W. Real and complex analysis, New York, London, Hamburg, McGraw-Hill Book Company, 1987, 483 p. ISBN: 978-0070542341 .

31.   Rudin W. Functional analysis, New York, McGraw-Hill Book Company, 1973, 407 p. Translated to Russian under the title Funktsional’nyi analiz, Moscow, Mir Publ., 1975, 450 p.

Cite this article as: A.Kh. Khachatryan, Kh.A. Khachatryan, H.S. Petrosyan. Questions of existence, absence, and uniqueness of a solution to one class of nonlinear integral equations on the whole line with an operator of Hammerstein–Stieltjes type. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 1, pp. 249–269.