E.N. Khailov. Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems ... P. 237-248

The paper considers minimization problems with a free right endpoint on a given time interval for control affine systems of differential equations. For this class of problems, we study an estimate for the number of different zeros of switching functions that determine the form of the corresponding optimal controls. This study is based on the analysis of non-autonomous linear systems of differential equations for switching functions and the corresponding auxiliary functions. Non-autonomous linear systems of third order are considered in detail. In these systems, the variables are changed so that the matrix of the system is transformed to a special upper triangular form. As a result, the number of zeros of the corresponding switching functions is estimated using the generalized Rolle’s theorem. In the case of a linear system of third order, this transformation is carried out using functions that satisfy a non-autonomous system of quadratic differential equations of the same order. The paper presents two approaches that ensure the extensibility of solutions to a non-autonomous system of quadratic differential equations to a given time interval. The first approach uses differential inequalities and Chaplygin’s comparison theorem. The second approach combines splitting a non-autonomous system of quadratic differential equations into subsystems of lower order and applying the quasi-positivity condition to these subsystems.

Keywords: switching function, generalized Rolle’s theorem, non-autonomous system of quadratic differential equations, extensibility of solutions, condition for quasi-positivity of solutions

Received December 20, 2023

Revised January 10, 2024

Accepted January 15, 2024

Evgenii Nikolaevich Khailov, Cand. Sci. (Phys.-Math.), Faculty of Computational Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992, Russia, e-mail: khailov@cs.msu.su

REFERENCES

1.   Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathematical theory of optimal processes, ed. L.W. Neustadt, NY; London, Interscience Publ. John Wiley & Sons, Inc., 1962, 360 p. ISBN: 0470693819 . Original Russian text published in Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov, Moscow: Fizmatgiz Publ., 1961, 391 p.

2.   Vasil’ev F.P. Metody optimizatsii [Optimization methods], Moscow: Publ. House “Factorial Press”, 2002, 824 p.

3.   Lee E.B., Markus L. Foundations of optimal control theory. NY, London, Sydney: John Wiley & Sons, Inc., 1967, 576 p. Translated under the title Osnovy teorii optimal’nogo upravleniya, Moscow, Nauka Publ., 1972, 576 p. ISBN: 0471522635 .

4.   Dmitruk A.V. On a certain generalization of the bound on a number of zeros of solutions for a linear differential equation. Sbornik trudov VNII sistemnykh issledovanii, 1990, no. 1, pp. 72–76.

5.   Dmitruk A.V. A generalized estimate on the number of zeros for solutions of a class of linear differential equations. SIAM J. Control Optim., 1992, vol. 30, no. 5, pp. 1087–1091. doi: 10.1137/0330057

6.   Khailov E.N., Grigorieva E.V. On the extensibility of solutions of nonautonomous quadratic differential systems. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, vol. 19, no. 4, p. 279–288.

7.   Schättler H., Ledzewicz U. Geometric optimal control: theory, methods and examples. NY, Heidelberg, Dordrecht, London: Springer, 2012, 640 p.

8.   Hartman Ph. Ordinary differential equations. 2nd ed. Ser. Classics Appl. Math. (Book 38), NY, London, Sydney: SIAM, 1982, 632 p. ISBN: 978-0521682947 . Translated to Russian under the title Obyknovennye differentsial’nye uravneniya. Moscow: Mir Publ., 1970, 720 p.

9.   Szarski J. Differential inequalities. Warszawa: Polish Sci. Publ., 1965. 256 p.

10.   Grigorieva E.V., Khailov E.N. Optimal vaccination, treatment, and preventive campaigns in regard to the SIR epidemic model. Math. Model. Nat. Pheno., 2014, vol. 9, no. 4, pp. 105–121. doi: 10.1051/mmnp/20149407

11.   Grigorieva E.V., Khailov E.N. Optimal intervention strategies for a SEIR control model of Ebola epidemics. Mathematics, 2015, vol. 3, no. 4, pp. 961–983. doi: 10.3390/math3040961

12.   Grigorieva E.V., Khailov E.N., Korobeinikov A. Optimal control for a SIR epidemic model with nonlinear incidence rate. Math. Model. Nat. Pheno., 2016, vol. 11, no. 4, pp. 89–104. doi: 10.1051/mmnp/201611407

13.   Grigorieva E., Khailov E., Korobeinikov A. Optimal control for an SEIR epidemic model with nonlinear incidence rate. Stud. Appl. Math., 2018, vol. 141, pp. 353–398. doi: 10.1111/sapm.12227

14.   Martcheva M. An introduction to mathematical epidemiology. NY; Heidelberg; Dordrecht; London: Springer, 2015, 453 p.

15.   Sharomi O., Malik T. Optimal control in epidemiology. Ann. Oper. Res., 2017, vol. 251, pp. 55–71.

16.   Kuzenkov O.A., Ryabova E.A. Matematicheskoe modelirovanie protsessov otbora [Mathematical simulation of selection processes]. Nizhnii Novgorod: Izdatel’stvo Nizhnegorod. Univ., 2007, 324 p. ISBN: 978-5-91326-011-6 .

17.   Khailov E., Grigorieva E., Klimenkova A. Optimal CAR T-cell immunotherapy strategies for a leukemia treatment model. Game, 2020, vol. 11, no. 4, art. no. 53, pp. 1–26. doi: 10.3390/g11040053

18.   Grigorieva E.V., Khailov E.N., Korobeinikov A. Optimal controls of the highly active antiretroviral therapy. Abstr. Appl. Anal., 2020, vol. 2020, art. id 8107106, pp. 1–23. doi: 10.1155/2020/8107106

19.   Grigorenko N.L., Khailov E.N., Grigorieva E.V., Klimenkova A.D. Optimal strategies of CAR T-Cell therapy in the treatment of leukemia within the Lotka–Volterra predator–prey model. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 43–58 .
doi: 10.21538/0134-4889-2021-27-3-43-58

20.    Schättler H., Ledzewicz U. Optimal control for mathematical models of cancer therapies: an application of geometric methods. NY; Heidelberg; Dordrecht; London: Springer, 2015, 496 p.

Cite this article as: E.N. Khailov. Extensibility of solutions of non-autonomous systems of quadratic differential equations and their application in optimal control problems. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 1, pp. 237–248.