Ultrafilters of widely understood measurable spaces and their application as generalized elements in abstract reachability problems with constraints of asymptotic nature are considered. Constructions for the embedding of conventional solutions, which are points of a fixed set, into the space of ultrafilters and representations of “limit” ultrafilters realized with topologies of the Wallman and Stone types are studied. The structure of the attraction set is established using constraints of asymptotic nature in the form of a nonempty family of sets in the space of ordinary solutions. The questions of implementation up to any preselected neighborhood of the attraction sets in the topologies of the Wallman and Stone types are studied. Some analogs of the mentioned properties are considered for the space of maximal linked systems.
Keywords: attraction set, constraints of asymptotic nature, ultrafilter
Received December 1, 2022
Revised January 18, 2023
Accepted January 23, 2023
Alexander Georgievich Chentsov, Dr. Phys.-Math. Sci., Prof., Corresponding Member RAS, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University Yekaterinburg, 620000 Russia, e-mail: chentsov@imm.uran.ru
REFERENCES
1. Warga J. Optimal control of differential and functional equations. NY: Acad. Press, 1972, 531 p. ISBN: 0127351507 . Translated to Russian under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami, Moscow: Nauka Publ., 1977, 624 p.
2. Duffin R.J. Infinite programs. In: H. W. Kuhn, A. WА,Tucker (eds.), Linear Inequalities and Related Systems, Princeton Univ. Press, Princeton, NJ, 1956, pp. 157–170.
3. Golshtein E.G. Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya [Duality theory in mathematical programming and its applications]. Moscow, Nauka Publ., 1971, 352 p.
4. Krasovskii N.N. Teoriya upravleniya dvizheniem [Theory of motion control]. Moscow, Nauka Publ., 1968, 476 p.
5. Panasyuk A.I. and Panasyuk V.I. Asimptoticheskaya magistral’naya optimizatsiya upravlyaemykh sistem [Asymptotic Turnpike Optimization of the Controlled Systems], Minsk, Nauka i Tekhnika Publ., 1986, 296 p.
6. Chentsov A.G., Baklanov A.P. On an asymptotic analysis problem related to the construction of an attainability domain. Proc. Steklov Inst. Math., 2015, vol. 291, pp. 279–298. doi: 10.1134/S0081543815080222
7. Chentsov A.G., Baklanov A.P., Savenkov I.I. A problem of attainability with constraints of asymptotic nature. Izv. IMI UdGU, 2016, no. 1 (47), pp. 54–118 (in Russian).
8. Chentsov A.G. Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature. Proc. Steklov Inst. Math., 2017, vol. 296, suppl. 1, pp. S102–S118. doi: 10.1134/S0081543817020109
9. Chentsov A.G., Pytkeev E.G. Constraints of asymptotic nature and attainability problems. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki., 2019, vol. 29, no. 4, pp. 569–582. doi: 10.20537/vm190408
10. Bulinskii A.V., Shiryaev A.N. Teoriya sluchainykh protsessov [Theory of Stochastic Processes]. Moscow: Fizmatlit Publ., 2005, 402 p. ISBN: 5-9221-0335-0 .
11. Alexandroff P.S. Einführung in die Mengenlehre und in die allgemeine Topologie [Introduction to set theory and to general topology]. Berlin: VEB Deutscher Verlag der Wissenschaften, 1984, 336 p. Original Russian text published in Aleksandrov P.S. Vvedenie v teoriyu mnozhestv i obshchuyu topologiyu. Moscow: Editorial URSS, 2005, 402 p.
12. Bourbaki N. Eléments de mathématique, Fascicule II, Livre III, Topologie générale, Chapitre 1, Structures topologiques, Chapitre 2, structures uniformes, Paris: Hermann, 1965, 255 p. ISBN(1971 ed.):3-540-33936-1. Translated to Russian under the title Obshchaya topologiya. Osnovnye struktury, Moscow, Nauka Publ., 1968, 272 p.
13. Engelking R. General topology. Warsaw, PWN/Polish Scientific Publishers, 1977. ISBN: 0800202090. Translated to Russian under the title Obshchaya topologiya, Moscow: Mir Publ., 1986, 752 p.
14. Arkhangel’skii A.V. Compactness. General topology II. Encycl. Math. Sci., 1996, vol. 50, pp. 1–117.
15. Chentsov A.G. Ultrafilters and maximal linked systems: basic properties and topological constructions. Izv. IMI UdGU, 2018, vol. 52, no. 1pp. 86–102 (in Russian). doi: 10.20537/2226-3594-2018-52-07
16. Chentsov A.G. On the supercompactness of ultrafilter space with the topology of Wallman type. Izv. IMI UdGU, 2019, vol. 54, no. 1, pp. 74–101 (in Russian). doi: 10.20537/2226-3594-2019-54-07
17. Chentsov A.G. Some ultrafilter properties connected with extension constructions. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, pp. 87–101 (in Russian).
18. Chentsov A.G. To question about realization of attraction elements in abstract attainability problems. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015, vol. 25, no. 2, pp. 212–229 (in Russian).
19. Chentsov A.G. Filters and ultrafilters in the constructions of attraction sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 1, pp. 113–142 (in Russian).
20. Chentsov A.G. The transformation of ultrafilters and their application in constructions of attraction sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 3, pp. 85–102. (in Russian).
21. de Groot J. Superextensions and supercompactness. In: Proc. I. Intern. Symp. on extension theory of topological structures and its applications. Berlin: VEB Deutscher Verlag Wis., 1969, pp. 89–90.
22. van Mill J. Supercompactness and Wallman spaces. Amsterdam. Math. Center Tracts, no. 85, Amsterdam: Mathematisch Centrum, 1977, 238 p. ISBN: 90-6196-151-3
23. Strok M, Szymanski A. Compact metric spaces have binary subbases. Fund. Math., 1975, vol. 89, no. 1, pp. 81–91. doi: 10.4064/fm-89-1-81-91
24. Fedorchuk V.V., Filippov V.V. Obshchaya topologiya. Osnovnye konstruktsii [General topology: Basic constructions]. Moscow: Fizmatlit Publ., 2006, 336 p. ISBN: 5-9221-0618-X .
25. Neveu J. Mathematical foundations of the calculus of probability. San Francisco: Holden-Day, 1965, 231 p. Translated to Russian under the title Matematicheskie osnovy teorii veroyatnostei, Moscow: Mir Publ., 1969, 310 p.
Cite this article as: A.G. Chentsov. Some properties of ultrafilters related to their use as generalized elements. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 2, pp. 271–286; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2023, Vol. 321, Suppl. 1, pp. S53–S68.
[References -> on the "English" button bottom right]