The group analysis of differential equations of ideal gas dynamics is most developed. The state equations for thermodynamic parameters were assumed to be time-independent. The time dependence may take place for relaxing media, for example, as a result of rheology or due to the energy averaging of processes in a multiphase medium. The problem of group analysis of relaxing media is posed. First, equivalence transformations are calculated that change only the state equations. Next, the problem of group classification is solved: it is required to find, up to equivalence transformations, classes of state equations for which the admitted group is expanded. This problem is partially solved in the present paper.
Keywords: gas dynamics, relaxing state equations, equivalence transformations, group classification
Received February 22, 2023
Revised April 10, 2023
Accepted April 17, 2023
Funding Agency: The work was supported under state contract no. 0246-2019-0052.
Salavat Valeevich Khabirov, Dr. Phys.-Math. Sci., Prof., Mavlyutov Institute of Mechanics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054 Russia, e-mail: habirov@anrb.ru
REFERENCES
1. Ovsyannikov L. V. The “podmodeli” program. Gas dynamics. J. Appl. Math. Mech., 1994, vol. 58, no. 4, pp. 601–627. doi: 10.1016/0021-8928(94)90137-6
2. Mukminov T.F., Khabirov S.V. Graph of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium. Sib. Elektron. Mat. Izv., 2019, vol. 16, pp. 121–143 (in Russian). doi: 10.33048/semi.2019.16.006
3. Chirkunov Yu.A., Khabirov S.V. Elementy simmetriingogo analiza differentsial’nykh uravnenii mekhaniki sploshnoi sredy [Elements of symmetry analysis of differential equations of continuum mechanics], Novosibirsk, Novosibirsk State Tech. Univ. Publ., 2012, 659 p. ISBN: 9785778218963 .
4. Ovsyannikov L.V. Group analysis of differential equations, NY: Acad. Press, 1982, 432 p. ISBN: 9781483219066 .. Original Russian text was published in Ovsyannikov L.V., Gruppovoi analiz differentsial’nykh uravnenii, Moscow, Nauka Publ., 1978, 399 p.
5. Khabirov S.V., Mukminov T.F. Simple waves of conic motions. Ufimskii Matematicheskii Zhurnal, 2022, vol. 14, no. 2. pp. 82–93 (in Russian).
6. Khabirov S.V. Classification of differential invariant submodels. Sib. Math. J., 2004, vol. 45, no. 3, pp. 562–579. doi: 10.1023/B:SIMJ.0000028621.02366.bf
7. Ibragimov N.H. A new conservation theorem. J. Math. Anal. Appl., 2007, vol. 333, no. 1, pp. 311–328. doi: 10.1016/j.jmaa.2006.10.078
8. Chirkunov Yu.A. Method of A-operators and conservation laws for the equations of gas dynamics. J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 2, pp. 213–219. doi: 10.1007/s10808-009-0029-7
9. Ibragimov N.H. Transformation Groups Applied to Mathematical Physics, NY, Springer-Verlag, 1985, 394 p. ISBN: 9781402003394 . Original Russian text was published in Ibragimov N.Kh., Gruppy preobrazovanii v matematicheskoi fizike, Moscow, Nauka Publ., 1983, 280 p.
ISBN: 978-0-02-889274-0 .
10. Khabirov S.V. Group analysis of the plane steady vortex submodel of ideal gas with varying entropy. Mathematics, 2021, vol. 9, no. 16, article no. 2006. doi: 10.3390/math9162006
11. Men’shchikov V.M. On continuation of invariant solutions of gas dynamic equations across shock wave. In: Dinamika sploshnoi sredy, Sb. Nauch. Tr. AN SSSR. Sib. Otd., 1970, vol. 4, pp. 163–169 (in Russian).
12. Men’shchikov V.M. On continuous coupling of invariant solutions. In: Dinamika sploshnoi sredy, Sb. Nauch. Tr. AN SSSR. Sib. Otd., 1972, vol. 10, pp. 70–84 (in Russian).
13. Pukhnachev V.V. Unsteady motions of viscous liquid with free bound described by partially invariant solutions of Navier–Stokes equations. In: Dinamika sploshnoi sredy, Sb. Nauch. Tr. AN SSSR. Sib. Otd., 1972, vol. 10, pp. 125–137 (in Russian).
14. Khabirov S.V. Self-similar convergence of a shock wave in a heat conducting gas. J. Appl. Math. Mech., 2009, vol. 73, no. 5, pp. 524–531. doi: 10.1016/j.jappmathmech.2009.11.005
15. Baikov V.A., Gazizov R.K., Ibragimov N.H. Approximate groups of transformations. Differ. Equ., 1993, vol. 29, no. 10, pp. 1487–1504.
16. Malkin A.Ya., Isaev A.I. Rheology: conceptions, methods, applications, Toronto, Chemical Puplishing, 2005, 474 p. ISBN: 978-1895198331 . Translated to Russian under the title Reologiya: kontseptsiya, metody, prilozheniya, St. Petersburg, Profession Publ., 2010, 500 p. ISBN: 978-5-93913-139-1 .
17. Vladimirov V.A. Modelling system for relaxing media. Symmetry, restrictions and attractive features of invariant solutions. Proc. Inst. Math. of NAS of Ukraine, 2000, vol. 30, no. 1, pp. 231–238.
18. Ovsyannikov L.V. Lektsii po osnovam gazovoi dinamiki [Lectures on the fundamentals of gas dynamics]. Moscow, Izhevsk, Institut Komp’yuternykh Issledovanii Publ., 2003, 336 p. ISBN: 5-93972-201-6 .
Cite this article as: S.V. Khabirov. On the group classification of ideal gas-dynamic relaxing media. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 2, pp. 260–270; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2023, Vol. 321, Suppl. 1, pp. S127–S137.