A.I. Korotkii, I.A. Tsepelev. Assimilation of boundary data for reconstructing the absorption coefficient in a model of stationary reaction–convection–diffusion ... P. 87-103

Direct and inverse problems for a model of stationary reaction–convection–diffusion are studied. The direct problem is to find a solution to the corresponding boundary value problem for given parameters of the model. Solvability conditions are specified for the direct problem, a priori estimates of the solution are presented, and the continuous dependence of the solution to the direct problem on a number of parameters is established. The inverse problem consists in finding the a priori unknown absorption coefficient of the medium, which characterizes the decay of some substance (or the heat sink) in a chemical process. The results of measuring the concentration of a substance (or its temperature) on an available part of the boundary of the domain filled with the corresponding medium (the domain of change of the spatial variable) are used as additional information for solving the inverse problem. It is proved that the inverse problem is ill-posed. Examples are given demonstrating that the inverse problem is unstable with respect to changes of the measured value and can have several solutions. To solve the inverse problem, a variational method based on the minimization of some appropriate residual functional (a target functional) is suggested. The extremal properties of the problem of minimizing the residual functional are studied. An explicit analytical formula is found for calculating the gradient of the residual functional, and the corresponding adjoint system and optimality system are written. Several stable iterative methods for minimizing the residual functional are specified. Results of numerical simulation of the solution to the inverse problem are presented.

Keywords: reaction–convection–diffusion equation, direct problem, inverse problem, residual functional, functional gradient, adjoint system, variational method, gradient minimization methods

Received March 3, 2023

Revised March 17, 2023

Accepted March 20, 2023

Alexander Illarionovich Korotkii, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: korotkii@imm.uran.ru 

Igor Anatolievich Tsepelev, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: tsepelev@imm.uran.ru 

REFERENCES

1.   Marchuk G.I. Mathematical models in environmental problems. Amsterdam, Elsevier, 1986, 218 p. Original Russian text was published in Marchuk G.I. Matematicheskoe modelirovanie v probleme okruzhayushchei sredy, Moscow, Nauka Publ., 1982, 319 p.

2.   Moiseev N.N. Chelovek i noosphera [Human and the noosphere], Moscow, Molodaya Gvardiya Publ., 1990, 352 p. ISBN 5-235-01070-1.

3.   Tikhonov A.N., Arsenin V.Y. Solutions of Ill-Posed Problems. Washington DC, Winston and Sons, 1977, 137 p. ISBN:0470991240. Translated to Russian under the title Metody resheniya nekorrektnyh zadach, Moscow, Nauka Publ., 1979, 288 p.

4.   Ivanov V.K., Vasin V.V, Tanana V.P. Theory of Linear Ill-Posed Problems and its applications, Utrecht, VSP, 2002, 281 p. ISBN: 906764367X. Original Russian text published in Ivanov V.K., Vasin V.V, Tanana V.P. Teoriya lineinyh nekorrektnyh zadach i ih prilozheniya, Moscow: Mir Publ., 1978, 206 p.

5.   Kabanikhin S.I. Inverse and Ill-Posed Problems. Theory and applications. Berlin, Walter de Gruyter, 2011, 475 p. ISBN: 3110224011. Original Russian text published in Kabanikhin S.I. Obratnye i nekorrektnye zadachi, Novosibirsk, Sibirskoe Nauchn. Izd., 2009, 457 p.

6.   Korotkii A.I., Kovtunov D.A. Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid. Proc. Steklov Inst. Math., 2006, vol. 255, suppl. 2, pp. 81–92. doi: 10.1134/S0081543806060071

7.   Korotkii A.I., Tsepelev I.A., Ismail-Zadeh A.T. Assimilating data on the free surface of a fluid flow to constrain its viscosity. Proc. Steklov Inst. Math. , 2022, vol. 319, Suppl. 1, pp. 162–174. doi: 10.1134/S0081543822060141

8.   Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press, 1961, 652 p. ISBN: 048664071X .

9.   Landau L.D., Lifshitz E.M. Fluid mechanics. Pergamon, Oxford, 1987, 539 p. ISBN: 9781483161044 . Original Russian text published in Landau L.D., Lifshits E.M. Gidrodinamika, Moscow, Nauka Publ., 1986, 736 p.

10.   Ladyzhenskaya O.A. The mathematical theory of viscous incompressible flow. NY: Gordon and Breach, 1987, 224 p. ISBN: 0677207603 . Original Russian text published in Ladyzhenskaya O.A. Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Moscow, Fitmatgiz, 1961, 204 p.

11.   Alekseev G.V., Tereshko D.A. Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti [Analysis and optimization in viscous fluid dynamics]. Vladivostok, Dal’nauka Publ., 2008, 365 p. ISBN: 5804410458 .

12.   Ladyzhenskaya O.A. Ural’tseva, N.N. Lineinye i kvazilineinye uravneniya ellipticheskogo tipa [Linear and quasilinear equations of elliptic type]. Moscow, Nauka Publ., 1973, 576 p.

13.   Mikhailov V.P. Differentsial’nye uravneniya v chastnykh proizvodnykh [Partial differential equations]. Moscow, Nauka Publ., 1976, 392 p.

14.   Adams R.A. Sobolev spaces. NY, Acad. Press, 1975, 268 p.

15.   Ladyzhenskaya O.A. The boundary value problems of mathematical physics. Berlin, Heidelberg, NY, Springer-Verlag, 1985, 322 p. doi: 10.1007/978-1-4757-4317-3 Original Russian text was published in Ladyzhenskaya O.A. Kraevye zadachi matematicheskoi fiziki, Moscow, Nauka Publ., 1973, 408 p.

16.   Sobolev S.L. Some application of functional analysis in mathematical physics. Providence: Amer. Math. Soc., 1991, 286 p. ISBN 5-02-013756-1 . Original Russian text was published in Sobolev S.L. Nekotorye primeneniya funktsional’nogo analiza v matematicheskoi fizike, Moscow, Nauka Publ., 1988, 336 p.

17.   Rektorys K. Variatsionnye metody v matematicheskoi fizike i tekhnike [Variational methods in mathematics, science and engineering]. Moscow, Mir Publ., 1985, 590 p.

18.   Smirnov V.I. Kurs vysshei matematiki [A course of higher mathematics], vol. 5. Moscow: Fizmatlit Publ., 1959, 657 p.

19.   Vasil’ev F.P. Metody optimizatsii [Optimization Methods]. Moscow, Faktorial Press, 2002, 824 p. ISBN 5-88688-056-9 .

20.   Nocedal J., Wright S.J. Numerical optimization. NY, Springer, 1999. 664 p. ISBN-10: 0-387-30303-0 .

21.   Kaltenbacher B., Neubauer A., Scherzer O. Iterative regularization methods for nonlinear ill-posed problems. Radon Ser. Comp. Appl. Math., vol. 6, Berlin, NY, Walter de Gruyter, 2008, 202 p. ISBN: 311020827X.

22.   Wolfe P. Convergence conditions for ascent methods II: Some corrections. In: SIAM Review, vol. 13, 1971, pp. 85–188. doi: 10.1137/1013035

Cite this article as: Korotkii A. I., Tsepelev I. A. Assimilation of boundary data for reconstructing absorption coefficient in a model of stationary reaction-convection-diffusion. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 2, pp. 87–103; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2023, Vol. 321, Suppl. 1, pp. S138–S153.