S.A. Bochkarev, V.P. Matveenko. Free vibration analysis of a cylindrical shell of variable thickness partially filled with a fluid ... P. 27-40

The paper investigates the natural vibration frequencies of circular cylindrical shells of rotation, completely or partially filled with an ideal compressible fluid. The thickness of the shells is not constant and varies in the meridional direction according to different laws. The behavior of the elastic structure and compressible fluid is described within the framework of the classical shell theory using the Euler equations. The effects of sloshing on the free surface of the fluid are not considered. The equations of motion of the shell together with the corresponding geometric and physical relations are reduced to a system of ordinary differential equations in new unknowns. The acoustic wave equation is transformed to a system of ordinary differential equations by applying the generalized differential quadrature method. The solution to the formulated boundary value problem is found using Godunov’s orthogonal sweep method. To calculate the natural frequencies of vibration, a stepwise procedure is used in combination with the refinement by the half-division method. The reliability of the obtained results is verified by comparing them with known numerical solutions. The behavior of minimum vibration frequencies at stepwise (linear and quadratic, having symmetric and asymmetric forms) and harmonic (with positive and negative curvature) variations in thickness is investigated for shells with different combinations of boundary conditions (simple support, rigid clamping and cantilever support) and levels of fluid filling. The study revealed the existence of configurations that provide at similar levels of  filling a significant increase in the frequency spectrum compared to shells of constant thickness with the same weight constraints.

Keywords: classical shell theory, cylindrical shell, compressible fluid, Godunov’s orthogonal sweep method, generalized differential quadrature method, free vibrations, variable thickness

Received April 4, 2023

Revised April 12, 2023

Accepted April 17, 2023

Funding Agency: The work was supported under state contract no. AAAA-A19-119012290100-8.

Sergey Arkad’evich Bochkarev, Cand. Sci. (Phys.-Math.), Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences, Perm, 614068 Russia, e-mail: bochkarev@icmm.ru

Valerii Pavlovich Matveenko, RAS Academician, Dr. Tech. Sci., Prof., Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences, Perm, 614068 Russia, e-mail: mvp@icmm.ru

REFERENCES

1.   Zheng D., Du J., Liu Y. Vibration characteristics analysis of an elastically restrained cylindrical shell with arbitrary thickness variation. Thin-Walled Struct., 2021, vol. 165, article no. 107930. doi: 10.1016/j.tws.2021.107930

2.   Kim J., Kim K., Kim K., Hong K., Paek C. Free vibration analysis of cross-ply laminated conical shell, cylindrical shell, and annular plate with variable thickness using the Haar wavelet discretization method. Shock Vib., 2022, vol. 2022, article no. 6399675. doi: 10.1155/2022/6399675

3.   Han R.P.S., Liu J.D. Free vibration analysis of a fluid-loaded variable thickness cylindrical tank. J. Sound Vib., 1994, vol. 176, no. 2, pp. 235–253. doi: 10.1006/jsvi.1994.1371

4.   Nurul Izyan M.D., Viswanathan K.K., Nur Hafizah A.K., Sankar D.S. Free vibration of layered cylindrical shells of variable thickness filled with fluid. In: Proceedings of the 28th International Congress on Sound and Vibration (ICSV28). Singapore, Society of Acoustics, 2022. ISBN 978-981-18-5070-7.

5.   Xie K., Chen M., Li Z. An analytic method for free and forced vibration analysis of stepped conical shells with arbitrary boundary conditions. Thin-Walled Struct., 2017, vol. 111, pp. 126–137. doi: 10.1016/j.tws.2016.11.017

6.   Bacciocchi M., Eisenberger M., Fantuzzi N., Tornabene F., Viola E. Vibration analysis of variable thickness plates and shells by the generalized differential quadrature method. Compos. Struct., 2016, vol. 156, pp. 218–237. doi: 10.1016/j.compstruct.2015.12.004

7.   El-Kaabazi N., Kennedy D. Calculation of natural frequencies and vibration modes of variable thickness cylindrical shells using the Wittrick–Williams algorithm. Comput. Struct., 2012, vol. 104–105, pp. 4–12. doi: 10.1016/j.compstruc.2012.03.011

8.   Trotsenko Yu. V. Free vibrations of a cylindrical shell of variable thickness. Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine, 2017, vol. 14, no. 2, pp. 163–171 (in Russian).

9.   Grigorenko A.Ya., Efimova T.L., Sokolova L.V. On one approach to studying free vibrations of cylindrical shells of variable thickness in the circumferential direction within a refined statement. J. Math. Sci., 2010, vol. 171, no. 4, pp. 548–563. doi: 10.1007/s10958-010-0156-y

10.   Godunov S.K. Ordinary differential equations with constant coefficients, Providence, Amer. Math. Soc., 1997, 282 p. ISBN: 978-0-8218-0656-2. Original Russian text was published in Godunov S.K., Obyknovennye differentsial’nye uravneniya s postoyannymi koeffitsientami. T.I: Kraevye zadachi, Novosibirsk, Novosibirsk State Univ., 1994. ISBN 5-7615-0014-0.

11.   Yudin A.S., Safronenko V.G. Vibroakustika strukturno-neodnorodnykh obolochek [Vibroacoustics of structurally inhomogeneous shells], Rostov-on-Don, Southern Federal University, 2013, 424 p. (in Russian).

12.   Yudin A.S., Ambalova N.M. Forced vibrations of coaxial reinforced cylindrical shells during interaction with a fluid. Soviet Appl. Mech., 1989, vol. 25, no. 12, pp. 1222–1227. doi: 10.1007/BF00887148

13.   Bochkarev S.A. Natural vibrations of a cylindrical shell with fluid partly resting on a two-parameter elastic foundation. Int. J. Struct. Stab. Dyn., 2022, vol. 22, no. 6, article no. 2250071. doi: 10.1142/S0219455422500717

14.   Bochkarev S.A. Numerical simulation of natural vibrations of a cylindrical shell partially filled with fluid and embedded in an elastic foundation. Vychislitel’nye tekhnologii, 2022, vol. 27, no. 4, pp. 15–32 (in Russian). doi: 10.25743/ICT.2022.27.4.003

15.   Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Natural vibrations of truncated conical shells containing fluid. Mech. Solids, 2022, vol. 57, no. 8, pp. 1971–1986. doi: 10.3103/S0025654422080064

16.   Sivadas K.R., Ganesan N. Free vibration of circular cylindrical shells with axially varying thickness. J. Sound Vib., 1991, vol. 147, no. 1. pp. 73–85. doi: 10.1016/0022-460X(91)90684-C

17.   Khloptseva N.S. Weight efficiency of thin-walled shells of constant and variable thickness. Izvestiya of Saratov University. Math. Mech. Inform., 2007, vol. 9, pp. 155–157 (in Russian).

18.   Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. Statika i dinamika tonkostennyh obolochechnyh konstruktsij [The statics and dynamics of thin-walled shell structures]. Moscow, Mashinostroyeniye, 1975, 376 p.

19.   Alfutov N.A., Zinov’ev P.A., Popov B.G. Raschet mnogosloinyh plastin i obolochek iz kompozitsionnykh materialov [Calculation of multilayer plates and shells of composite materials]. Moscow, Mashinostroyeniye, 1984. 264 p.

20.   Averbukh A.Z., Veitsman R.I., Genkin M.D. Kolebaniya elementov konstrukcii v zhidkosti [Vibration of structural elements in fluid]. Moscow, Nauka Publ., 1987, 158 p.

21.   Amabili M. Free vibration of partially filled, horizontal cylindrical shells. J. Sound Vib., 1996, vol. 191, no. 5, pp. 757–780. doi: 10.1006/jsvi.1996.0154

22.   Shu C. Differential quadrature and its application in engineering, London, Springer-Verlag, 2000, 340 p. doi: 10.1007/978-1-4471-0407-0

23.   Bochkarev S.A. Natural vibrations of truncated conical shells of variable thickness. J. Appl. Mech. Tech. Phys., 2021, vol. 62, no. 7, pp. 1222–1233. doi: 10.1134/S0021894421070038

24.   Ganesan N., Sivadas K.R. Vibration analysis of orthotropic shells with variable thickness. Computers & Structures, 1990, Vol. 35, no. 3, pp. 239–248. doi: 10.1016/0045-7949(90)90343-z

25.   Maxch T., Horacek J., Trnka J., Veselý J. Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement. J. Sound Vib., 1996, vol. 193, no. 3, pp. 669–690. doi: 10.1006/jsvi.1996.0307

26.   Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Numerical modeling of spatial vibrations of cylindrical shells, partially filled with fluid. Vychislitel’nye tekhnologii, 2013, vol. 18, no. 2, pp. 12–24 (in Russian).

27.   Kashfutdinov B.D., Shcheglov G.A. Validation of the open source Code_Aster software used in the modal analysis of the fluid-filled cylindrical shell. Science and Education of the Bauman Moscow State Tech. Univ., 2017, iss. 6, pp. 101–117 (in Russian). doi: 10.7463/0617.0001170

28.   Ergin A., Ugurlu B. Hydroelastic analysis of fluid storage tanks by using a boundary integral equation method. J. Sound Vib., 2004, vol. 275, no. 3–5, pp. 489–513. doi: 10.1016/j.jsv.2003.07.034

29.   Gorshkov A.G., Morozov V.I., Ponomarev V.I., Shklyarchuk F.N. Aerogidrouprugost’ konstrukcii [Aerohydroelasticity of structures]. Moscow, Fizmatlit, 2000, 592 p.

30.   Bochkarev S.A., Lekomtsev S.V. Stability analysis of composite cylindrical shell containing rotating fluid. IOP J. Phys.: Conf. Ser., 2021, vol. 1945, article no. 012034. doi: 10.1088/1742-6596/1945/1/012034

31.   Bochkarev S.A., Lekomtsev S.V. Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells. Struct. Eng. Mech., 2022, vol. 81, no. 6, pp. 769–780. doi: 10.12989/sem.2022.81.6.769

32.   Bochkarev S.A., Lekomtsev S.V., Senin A.N. Numerical modeling of natural vibrations of coaxial shells partially filled with fluid, taking into account the effects on the free surface. Mechanics Bulletin of Perm National Research Polytech. Univ., 2022, no. 1, pp. 23–35 (in Russian). doi: 10.15593/perm.mech/2022.1.03

Cite this article as: S.A. Bochkarev, V.P. Matveenko. Free vibration analysis of a cylindrical shell of variable thickness partially filled with a fluid. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 2, pp. 27–40; Proceedings of the Steklov Institute of Mathematics (Suppl.1), 2023, Vol. 321, Suppl. 1, pp. S20–S32.