V.I. Yanchevskii, A.S. Kondrat’ev, T.S. Busel, A.A. Osinovskaya. To the memory of Irina Dmitrievna Suprunenko ... P. 280-287

The paper presents the research of Irina Dmitrievna Suprunenko, a prominent specialist in the representation theory of algebraic groups and finite groups of Lie type.

Keywords: Irina Dmitrievna Suprunenko, algebraic group, finite group of Lie type, representation

Received January 20, 2023

Revised January 20, 2023

Accepted January 30, 2023

Information in English

Vyacheslav Ivanovich Yanchevskii, a Member of the National Academy of Sciences of Belarus, Dr. Phys.-Math. Sci., Prof., Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 220072 Belarus, e-mail: yanch@im.bas-net.by

Anatolii Semenovich Kondrat’ev, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: A.S.Kondratiev@imm.uran.ru

Tatsiana Sergeevna Busel, Ph. D., Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 220072 Belarus, e-mail: tbusel@im.bas-net.by

Anna Aleksandrovna Osinovskaya, Ph. D., Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 220072 Belarus, e-mail: anna@im.bas-net.by

REFERENCES

1.   Suprunenko I.D. The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic. Memoirs Amer. Math. Soc., 2009. Vol. 200, no. 939. 154 p. doi: 10.1090/memo/0939 

2.   Suprunenko I.D. Irreducible representations of simple algebraic groups containing matrices with big Jordan blocks. Proc. London Math. Soc., 1995, vol. 71, no. 2, pp. 281–332. doi: 10.1112/plms/s3-71.2.281 

3.   Suprunenko I.D. The minimal polynomials of unipotent elements in irreducible representations of the special linear group. Acta Appl. Math., 1998, Vol. 52, no. 1-3, pp. 325–330. doi: 10.1023/A:1005912620357 

4.   Suprunenko I.D. Identification of classical algebraic groups with the aid of matrices with big Jordan blocks. Dokl. NAN Belarusi, 2001, vol. 45, no. 4, pp. 27–30 (in Russian).

5.   Suprunenko I.D. Minimal polynomials of elements of order $p$ in irreducible representations of Chevalley groups over fields of characteristic $p$. Siberian Advances in Math., 1996, vol. 6, no. 4, pp. 97–150.

6.   Suprunenko I. D. Unipotent elements of nonprime order in representations of the classical algebraic groups: two big Jordan blocks. J. Math. Sci. (N. Y.), 2014, vol. 199, no 3, pp. 350–374. doi: 10.1007/s10958-014-1863-6 .

7.   Busel T.S., Suprunenko I.D., Testerman D. The minimal polynomials of unipotent elements of non-prime order in irreducible representations of the exceptional algebraic groups in some good characteristics. Dokl. NAN Belarusi, 2019, vol. 63, no. 5, pp. 519–525. doi: 10.29235/1561-8323-2019-63-5-519-525

8.   Suprunenko I.D. Minimal polynomials of the images of the unipotent elements of non-prime order in the irreducible representations of an algebraic group of type $F_4$. Dokl. NAN Belarusi, 2022, vol. 66, no. 3, pp. 269–273. doi: 10.29235/1561-8323-2022-66-3-269-273 

9.   Velichko M.V., Suprunenko I.D. Small quadratic elements in representations of the special linear group with large highest weights, J. Math. Sci. (N. Y.), 2007, vol. 147, no. 5, pp. 7021–7041. doi: 10.1007/s10958-007-0527-1 

10.   Osinovskaya A.A., Suprunenko I.D. On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups. J. Algebra, 2004, vol. 273, no. 2, pp. 586–600. doi: 10.1016/j.jalgebra.2003.06.001 

11.   Osinovskaya A. A., Suprunenko I. D. The block structure of unipotent elements from naturally embedded subgroups of type $A_3$ in special modular representations of groups of type $A_n$. Dokl. National’noi academii nauk Belarusi, 2007, Vol. 51, no 6, pp. 25–29 (in Russian).

12.   Osinovskaya A.A., Suprunenko I.D. Unipotent elements from subsystem subgroups of type $A_3$ in representations of the special linear group (in Russian). Dokl. National’noi academii nauk Belarusi, 2012, Vol. 56, no 4, pp. 11–15.

13.   Busel T.S., Suprunenko I.D. The block structure of the images of regular unipotent elements from subsystem symplectic subgroups of rank 2 in irreducible representations of symplectic groups. I–III. I — Siberian Advances in Mathematics, 2020, vol. 30, no. 1, pp. 1–20. doi: 10.3103/S1055134420010010; II — Siberian Advances in Mathematics, 2020, vol. 30, no. 4, pp. 229–274. doi: 10.1134/S105513442004001X; III — Siberian Advances in Mathematics, 2021, vol. 31, no. 2, pp. 112–130. doi: 10.1134/S1055134421020024

14.   Suprunenko I.D. On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group. J. Math. Sci. (N. Y.), 2012, Vol. 183, no. 5, pp. 715–726. doi: 10.1007/s10958-012-0835-y

15.   Suprunenko I. D. Subgroups of $GL(n, p^{m})$ containing $SL(2,p)$ in an irreducible representation of degree n. I. Vestsi Acad. Navuk BSSR. Ser. fiz.-mat. navuk, 1979, no. 1, pp. 18–24 (in Russian).

16.   Suprunenko I. D. Subgroups of $GL(n, p^{m})$ containing $SL(2,p)$ in an irreducible representation of degree n. II. Vestsi Acad. Navuk BSSR. Ser. fiz.-mat. navuk, 1979, no. 2, pp. 11–16 (in Russian).

17.   Suprunenko I.D. Preservation of systems of weights of irreducible representations of an algebraic group and a Lie algebra of type $A_l$ with bounded higher weights in reduction modulo $p$. Vestsi Acad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, 1983, no. 2, pp. 18–22 (in Russian).

18.   Zalesskii A. E., Suprunenko I. D. Reduced symmetric powers of natural realizations of the groups $SL_m (P)$ and $Sp_m (P)$ and their restrictions to subgroups. Siberian Math. J., 1990, vol. 31, no. 4, pp. 555–566. doi: 10.1007/BF00970625 

19.   Brundan J., Kleshchev A.S., Suprunenko I.D. Semisimple restrictions from $GL(n)$ to $GL(n-1)$. J. Reine und Angew. Math., 1998, vol.  1998, no. 500, pp. 83–112. doi: 10.1515/crll.1998.072 

20.   Suprunenko I.D., Zalesskii A.E. On restricting representations of simple algebraic groups to semisimple subgroups with two simple components. Trudy Instituta Matematiki, 2005, vol. 13, no 2, pp. 109–115.

21.   Suprunenko I.D. Special composition factors in restrictions of representations of special linear and symplectic groups to subsystem subgroups with two simple components. Trudy Instituta matematiki, 2018, vol. 26, no. 1, pp. 115–133.

22.   Baranov A.A., Suprunenko I.D. Branching rules for modular fundamental representations of symplectic groups. Bull. London Math. Soc., 2000, vol. 32, no. 4, pp. 409–420. doi: 10.1112/S002460930000727X 

23.   Baranov A.A., Osinovskaya A.A., Suprunenko I.D. Modular representations of the special linear groups with small weight multiplicities. J. Algebra, 2014, Vol. 397, pp. 225–251. doi 10.1016/j.jalgebra.2013.08.032 

24.   Osinovskaya A.A., Suprunenko I.D. Inductive systems of representations with small highest weights for natural embeddings of symplectic groups // Trudy Instituta matematiki. 2014. Vol. 22, no. 2. pp. 109–118.

25.   Osinovskaya A.A., Suprunenko I.D. Stabilizers and orbits of first level vectors in modules for the special linear groups. J. Group Theory, 2013, Vol. 16, pp. 719–743. doi: 10.1515/jgt-2013-0010 .

26.   Kondrat’ev A.S., Osinovskaya A.A., Suprunenko I.D. On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group. Proc. Steklov Inst. Math. (Suppl.), 2014, vol. 285, no 1, pp. S108–S115. doi: 10.1134/S0081543814050113

27.   Kondrat’ev A.S., Suprunenko I.D., Khramtsov I.V. On finite 4-primary groups having a disconnected Gruenberg–Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 1, pp. 139–155. doi: 10.21538/0134-4889-2022-28-1-139-155 

Cite this article as: V.I.Yanchevskii, A.S. Kondrat’ev, T.S. Busel, A.A. Osinovskaya. To the memory of Irina Dmitrievna Suprunenko. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 1 , pp. 280–287.