Д.В. Хлопин. Дифференциальная игра с возможностью досрочного завершения ... С. 189-214

УДК 517.977.8

MSC: 49N70, 60G40, 91A60, 91A23

DOI: 10.21538/0134-4889-2021-27-4-189-214

Работа выполнена при поддержке РНФ (проект 17-11-01093).

Рассматривается антагонистическая дифференциальная игра на конечном промежутке, в которой игроки помимо управления траекторией системы влияют также на момент завершения игры. Предполагается, что момент досрочного завершения игры является абсолютно непрерывной случайной величиной, плотность которой задается назначаемой каждым игроком ограниченной измеримой функцией времени (интенсивностью его влияния на завершение игры). Платежная функция при этом может зависеть как от момента завершения игры и положения системы в этот момент, так и от игрока-инициатора завершения игры. Для формализации стратегий применяются неупреждающие случайные процессы с непрерывными справа и имеющими предел слева траекториями. В предположении условия седловой точки в маленькой игре показано существование цены игры. С этой целью исходная игра приближается вспомогательной игрой на основе марковской цепи с непрерывным временем, зависящей от управлений и интенсивностей игроков; и на основе оптимальных в марковской игре стратегий для исходной игры предложена процедура управления со стохастическим поводырем. Показано, что при неограниченном увеличении числа точек в марковской игре такая процедура приводит к сколь угодно близкой к оптимальной стратегии в исходной игре.

Ключевые слова: антагонистические игры, игра Дынкина, дифференциальные игры, стохастический поводырь, экстремальный сдвиг, марковская цепь с непрерывным временем

СПИСОК ЛИТЕРАТУРЫ

1.   Amir R., Evstigneev I.V., Schenk-Hoppe K.R. Asset market games of survival: a synthesis of evolutionary and dynamic games // Annals of Finance. 2013. Vol. 9, no. 2. P. 121–144. doi: 10.1007/s10436-012-0210-5 

2.   Averboukh, Y. Approximate solutions of continuous-time stochastic games // SIAM J. Control Optim. 2016. Vol. 54, no. 5. P. 2629–2649. doi:10.1137/16M1062247 

3.   Averboukh, Y. Approximate Public-Signal Correlated Equilibria For Nonzero-Sum Differential Games // SIAM J. Control Optim. 2019. Vol. 57, no. 1. P. 743–772. doi:10.1137/17M1161403 

4.   Basu A., Stettner L. Zero-sum Markov games with impulse controls // SIAM J. Control Optim. 2020. Vol. 58, no. 1. P. 580–604. doi:10.1137/18M1229365 

5.   Bensoussan, A., Friedman, A. Nonlinear variational inequalities and differential games with stopping times // J. Functional Analysis. 1974. Vol. 16, no. 3. P. 305–352. doi:10.1016/0022-1236(74)90076-7 

6.   Bensoussan, A., Friedman, A. Nonzero-sum stochastic differential games with stopping times and free boundary problems // Trans. Amer. Math. Soc. 1977. Vol. 231, no. 2. P. 275–327. doi:10.1090/S0002-9947-1977-0453082-7 

7.   Bielecki T. R., Crepey, S., Jeanblanc M., Rutkowski M. Arbitrage pricing of defaultable game options with applications to convertible bonds // Quantitative Finance. 2008. Vol. 8, no. 8. P. 795–810. doi:10.1080/14697680701401083 

8.   Биллингсли П. Сходимость вероятностных мер. М.: Наука, 1977. 352 c.

9.   Боровков А.А. Теория вероятностей. М.: УРСС, 1999. 470 c.

10.   Дынкин Е.Б. Игровой вариант задачи об оптимальной остановке // Докл. АН СССР. 1969. Т. 185, вып. 1. C. 16–19.

11.   Ekström E., Peskir G. Optimal stopping games for Markov processes // SIAM J. Control Optim. 2008. Vol. 47, no. 2. P. 684–702. doi:10.1137/060673916 

12.   Gensbittel F., Grün C. Zero-sum stopping games with asymmetric information // Math. Oper. Research. 2019. Vol. 44, no. 1. P. 277–302. doi: 10.1287/moor.2017.0924 

13.   Gromova E., Malakhova A., Palestini A. Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration // Mathematics. 2018. Vol. 6, no. 9, art. no. 165. doi:10.3390/math6090165 

14.   Guo X, Hernandez-Lerma O. Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates // Bernoulli. 2005. Vol. 11, no. 6. P. 1009–1029. doi:10.3150/bj/1137421638 

15.   Hamadene S. Mixed zero-sum stochastic differential game and American game options // SIAM J. Control Optim. 2006. Vol. 45, no. 2. P. 496–518. doi:10.1137/S036301290444280X 

16.   Kolokoltsov V.N. Markov processes, semigroups and generators. Berlin: De Gryuter, 2011. 430 p. (Ser. De Gruyter Studies in Mathematics; vol. 38.) ISBN 978-3-11-025010-7 .

17.   Красовский Н.Н. Игра сближения-уклонения со стохастическим поводырем // Докл. АН СССР. 1977. Т. 237, вып. 5. C. 1020–1023.

18.   Красовский Н.Н., Котельникова А.Н. О дифференциальной игре на перехват // Тр. МИАН. 2010. Т. 268. C. 168–214. doi: 10.1134/S008154381001013X 

19.   Красовский Н.Н., Котельникова А.Н. Стохастический поводырь для объекта с последействием в позиционной дифференциальной игре // Тр. Ин-та математики и механики УрО РАН. 2011. Т. 17, № 2. C. 97–104.

20.   Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974. 456 с.

21.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY: Springer, 1988. 517 p. ISBN: 978-1-4612-8318-8 .

22.   Laraki R., Solan E. The value of zero-sum stopping games in continuous time // SIAM J. Control Optim. 2005. Vol. 43, no. 5. P. 1913–1922. doi:10.1137/S0363012903429025 

23.   Marin-Solano J., Shevkoplyas E. Non-constant discounting and differential games with random time horizon // Automatica. 2011. Vol. 47, no. 12. P. 2626–2638. doi:10.1016/j.automatica.2011.09.010 

24.   Mazalov V. V. Dynamic games with optimal stopping. In: Game theory and Applications, vol. 2, L.A. Petrosjan and V.V. Mazalov (eds.), NY: Nova Science Publ., 1996. 223 p. P. 37–46. ISBN 1-56072-390-4 .

25.   Мейер П.-А. Вероятность и потенциалы. М.: Мир, 1973, 324 с.

26.   Neyman, A. Continuous-time stochastic games // Games and Economic Behavior. 2017. Vol. 104. P. 92–130. doi: 10.1016/j.geb.2017.02.004 

27.   Prieto-Rumeau T., Hernandez-Lerma O. Selected topics on continuous-time controlled Markov chains and Markov games. London: Imperial College Press, 2012. 279 p. (ICP Advanced Texts in Math.; vol 5). ISBN-13 978-1-84816-848-0 .

28.   Rockafellar R. T., Wets R. J. B. Variational analysis. Berlin: Springer-Verlag, 2009. 734 p. (A Series of Comprehensive Studies in Math.; vol. 317). ISBN 978-3-540-62772-2 .

29.   Sorin S., Vigeral G. Reversibility and oscillations in zero-sum discounted stochastic games // J. Dyn. Games. 2015. Vol. 2, no. 1. P. 103–115. doi:10.3934/jdg.2015.2.103 

30.   Субботин А.И. Обобщенные решения уравнений в частных производных первого порядка. Перспективы динамической оптимизации. М.; Ижевск: Институт компьютерных исследований, 2003. 336 c. ISBN 5-93972-206-7 .

Поступила 8.02.2021

После доработки 11.05.2021

Принята к публикации 17.05.2021

Хлопин Дмитрий Валерьевич
канд. физ.-мат. наук
зав. отделом
Институт математики и механики им. Н.Н. Красовского УрО РАН
г. Екатеринбург
e-mail: khlopin@imm.uran.ru

Ссылка на статью: Д.В. Хлопин. Дифференциальная игра с возможностью досрочного завершения // Тр. Ин-та математики и механики УрО РАН. 2021. Т. 27, № 4. С. 189-214

English

D.V. Khlopin. Differential game with the possibility of early termination

We consider a zero-sum differential game on a finite interval, in which the players not only control the system’s trajectory but also influence the terminal time of the game. It is assumed that the early terminal time is an absolutely continuous random variable, and its density is given by bounded measurable functions of time assigned by both players (the intensities of the influence of each player on the termination of the game). The payoff function may depend both on the terminal time of the game together with the position of the system at this time and on the player who initiates the termination. The strategies are formalized by using nonanticipating càdlàg processes. The existence of the game value is shown under the Isaacs condition. For this, the original game is approximated by an auxiliary game based on a Markov chain with continuous time, which depends on the controls and intensities of the players. Based on the strategies optimal in this Markov game, a control procedure with a stochastic guide is proposed for the original game. It is shown that, under an unlimited increase in the number of points in the Markov game, this procedure leads to a near-optimal strategy in the original game.

Keywords: two-person zero-sum game, Dynkin game, differential game, stochastic guide, extremal shift, Markov chain with continuous time

Received February 8, 2021

Revised May 11, 2021

Accepted May 17, 2021

Funding Agency: This work was supported by the Russian Science Foundation (project no. 17-11-01093).

Dmitry Valer’evich Khlopin, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: khlopin@imm.uran.ru

Cite this article as: D.V. Khlopin. Differential game with the possibility of early termination, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 4, pp. 189–214.

[References -> on the "English" button bottom right]