In this paper, we solve extremal problems related to the best simultaneous polynomial approximation of functions analytic in the unit disk and belonging to the Hardy space $\mathscr{H}_2$. The problem of simultaneous approximation of periodic functions by trigonometric polynomials was considered by A.L. Garkavi in 1960. Then, in the same year, A.F. Timan considered this problem for classes of entire functions defined on the axis. We establish a number of exact theorems and calculate the exact values of the least upper bounds of the best simultaneous approximations of a function and its successive derivatives by polynomials and their corresponding derivatives on some classes of complex functions belonging to the Hardy space $\mathscr{H}_2$.
Keywords: best simultaneous approximation, analytic function, unit disk, modulus of continuity, extremal problem, angular boundary value, polynomial
Received February 28, 2021
Revised September 10, 2021
Accepted October 11, 2021
M.Sh. Shabozov, Dr. Sci. (Phys.-Math.), Prof., Tajik National University, Dushanbe, 734025. Republic of Tajikistan, e-mail: shabozov@mail.ru
G.A. Yusupov, Dr. Sci. (Phys.-Math.), Prof., Khorog State University by name M. Nazarshoev, Khorog, 734000. Republic of Tajikistan, e-mail: yusufzoda.gulzorkhon@gmail.com
J.J. Zargarov, Department of Mathematical Analysis, Khorog State University by name M. Nazarshoev, Khorog, 734000. Republic of Tajikistan, e-mail: jamshed-80@mail.ru
REFERENCES
1. Babenko K.I. Best approximations to a class of analytic functions. Izv. Akad. Nauk SSSR Ser. Mat., 1958, vol. 22, no. 5, pp. 631–640 (in Russian).
2. Scheick J.T. Polynomial approximation of functions analytic in a disk. Proc. Am. Math. Soc., 1966, vol. 17, pp. 1238–1243. doi: 10.2307/2035717
3. Belyi V.I. The problem of the best linear methods for approximating functions which are analytic in the unit circle. Ukr. Mat. J., 1967, vol. 19, no. 2, pp. 216–220. doi: 10.1007/BF01086834
4. Belyi V.I., Dveyrin M.Z. Best linear methods of approximation on classes of functions defined by union kernels. In: Metric questions of the theory of functions and maps. Kiev: Naukova Dumka, 1971, no. 2, pp. 37–54 (in Russian).
5. Dveyrin M.Z. Approximation of functions analytic in the unit circle. In: Metric questions in the theory of functions and maps. Kiev: Naukova Dumka, 1975, no. 6, pp. 41–54 (in Russian).
6. Dveyrin M.Z. Widths and $\varepsilon$-entropy of classes of functions that are analytic in the unit circle of functions. Function theory, functional analysis and their applications, 1975, no. 23, pp. 32–46 (in Russian).
7. Tikhomirov V.M. Diameters of sets in function spaces and the theory of best approximations. Russian Math. Surveys, 1960, vol. 15, no. 3, pp. 75–111. doi: 10.1070/RM1960v015n03ABEH004093
8. Tikhomirov V.M. Nekotorye voprosy teorii priblizhenii [Some questions of approximation theory]. M.: Mosk. Gos. Univ., 1976, 304 p.
9. Taikov L.V. On the best approximation in the mean of certain classes of analytic functions. Math. Notes Acad. Sci. of the USSR, 1967, vol. 1, no. 2, pp. 104–109. doi: 10.1007/BF01268058
10. Ainulloev N., Taikov L.V. Best approximation in the sense of Kolmogorov of classes of functions analytic in the unit disc. Math. Notes, 1986, vol. 40, no. 3, pp. 699–705. doi: 10.1007/BF01142473
11. Taikov L.V. Diameters of certain classes of analytic functions. Math. Notes Acad. Sci. of the USSR, 1977, vol. 22, no. 2, pp. 650–656. doi: 10.1007/BF01780976
12. Shabozov M.Sh., Shabozov O.Sh. Widths of some classes of analytic functions in the Hardy space $H_2$. Math. Notes Acad. Sci. of the USSR, 2000, vol. 68, no. 5, pp. 675–679. doi: 10.1023/A:1026692112651
13. Shabozov M.Sh., Yusupov G.A. Best approximation and widths of some classes of analytic functions. Dokl. Math., 2002, vol. 65, no. 1, pp. 111–113.
14. Shabozov M.Sh., Yusupov G.A. Best approximation methods and widths for some classes of functions in $H_{q,\rho},\, 1\le q\le\infty,\, 0<\rho\le1$ . Siberian Math. J., 2016, vol. 57, no. 2, pp. 369–376. doi: 10.1134/S0037446616020191
15. Garkavi A.L. Simultaneous approximation to a periodic function and its derivatives by trigonometric polynomials. Izv. Akad. Nauk SSSR Ser. Mat., 1960, vol. 24, no. 1, pp. 103–128 (in Russian).
16. Timan A.F. Simultaneous approximation of functions and their derivatives on the whole real axis. In: Am. Math. Soc., Transl., Ser. 2, 1965, vol. 44, pp. 1–11.
17. Kousis P. Introduction to $H^p$ spaces. Cambridge: Cambridge University Press, 1999, 304 p. ISBN: 0521455219 . Translated to Russian under the title Vvedenie v teoriyu prostranstv $H^p$, Moscow: Mir Publ., 1984, 256 p.
18. Privalov I.I. Granichnye svoistva analiticheskikh funktsii [Boundary properties of analytic functions]. Moscow: Gostekhizdat, 1950, 336 p.
19. Smirnov V.I., Lebedev N.A. Functions of a complex variable. Constructive theory. London: Iliffe Books Ltd., 1968, 488 p. ISBN: 9780262190466 . Original Russian text published in Smirnov V.I., Lebedev N.A. Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Moscow; Leningrad: Nauka Publ., 1964, 440 p.
20. Vakarchuk S.B., Vakarchuk M.B. Inequalities of Kolmogorov type for analytic functions of one and two complex variables and their applications to approximation theory. Ukr. Math. J., 2012, vol. 63, no. 12, pp. 1795–1819. doi: 10.1007/s11253-012-0615-3
21. Vakarchuk S.B., Zabutnaya V.I. A sharp inequality of Jackson–Stechkin type in $L_2$ and the widths of functional classes. Math. Notes, 2009, vol. 86, no. 3, pp. 306–313. doi: 10.1134/S0001434609090028
Cite this article as: M.Sh. Shabozov, G.A. Yusupov, J.J. Zargarov. On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 4, pp. 239–254.