B.V. Semisalov, G.A. Kuzmin. On the question of approximation of smooth functions with boundary layer components ... P. 111-124

Error estimates are obtained for the method of approximation of smooth functions having boundary layer components on an interval. The method uses linear combinations of special functions obtained from the Fourier series by changes of variables. Three kinds of such variable changes are analyzed. Jackson’s theorem and Kolmogorov’s relations are used as underlying results. Consequently, norms of the derivative of the function being approximated appear in the estimates. The developed method enables one to significantly reduce the order of the derivative and the value of the coefficient at it in these estimates in comparison with the estimates of the error of the best polynomial approximation. Due to this, the rate of decay of the error for new approximations is significantly higher than that of polynomial ones. Expressions for the coefficients at the norms of derivatives are obtained. Analysis of the asymptotics of the remainder terms is given. A good agreement can be observed between the theoretical results and the experimental data published earlier.

Keywords: boundary layer, Fourier series, approximation without saturation, non-polynomial approximation, change of variables, error estimates, high order of convergence

Received January 14, 2021

Revised April 19, 2021

Accepted April 26, 2021

Funding Agency: This work was supported by the Russian Science Foundation (project no. 20-71-00071).

Boris Vladimirovich Semisalov, Cand. Sci. (Phys.-Math.), Sobolev Institute of Mathematics SB RAN, Novosibirsk, 630090 Russia; Novosibirsk State University, Novosibirsk, 630090 Russia, e-mail: ViBiS@ngs.ru

Georgy Andreevich Kuzmin, doctoral student, Sobolev Institute of Mathematics SB RAN, Novosibirsk, 630090 Russia, e-mail: kubgeom@mail.ru

REFERENCES

1.   Zadorin A.I. Raznostnye skhemy dlya zadach s pogranichnym sloem [Difference schemes for problems with a boundary layer]. Omsk: OmGU Publ., 2002, 113 p. ISBN: 5-7779-0313-4 .

2.   Bagayev B.M., Shaidurov V.V. Setochnye metody resheniya zadach s pogranichnym sloem [Grid methods to solve problems with a boundary layer]. Part 1. Novosibirsk: Nauka Publ., 1998, 199 p. ISBN: 5-02-031309-2 .

3.   Shishkin G.I. Setochnye approksimatsii singulyarno vozmushchennykh ellipticheskikh i parabolicheskikh uravnenii [Grid approximations of singular-perturbed elliptic and parabolic equations]. Yekaterinburg: UrO RAN Publ., 1992, 232 p. ISBN: 5-7691-0159-8 .

4.   Liseikin V.D., Likhanova Yu.V., Shokin Yu.I. Raznostnye setki i koordinatnye preobrazovaniya dlya chislennogo resheniya singulyarno vozmushchennykh zadach [Difference grids and coordinate transformations for numerical solution of singular-perturbed problems]. Novosibirsk: Nauka Publ., 2007, 311 p. ISBN: 978-5-02-023181-8 .

5.   Semisalov B.V., Kuzmin G.A. Modification of Fourier approximation for solving boundary value problems having singularities of boundary layer type. In: CEUR Workshop Proceedings, 2017, vol. 1839, pp. 406–422. Available on: http://ceur-ws.org/Vol-1839/MIT2016-p36.pdf 

6.   Babenko K.I. On the phenomenon of saturation in numerical analysis. Dokl. Akad. Nauk SSSR, 1978, vol. 241, no. 3, pp. 505–508 (in Russian).

7.   Babenko K.I. Osnovy chislennogo analiza [Foundations of numerical analysis]. Moscow: Nauka Publ., 1986, 744 p.

8.   Gavrikov M.B. Methods without saturation in computational mathematics. Keldysh Institute Preprints, 2019, no. 075, 40 p. (in Russian). doi: 10.20948/prepr-2019-75 

9.   Jackson D. On approximation by trigonometric sums and polynomials. Trans. Am. Math. Soc., 1912, vol. 13, pp. 491–515. doi: 10.1090/S0002-9947-1912-1500930-2 

10.   Belykh V.N. On the best approximation properties of $C^\infty$-smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods). Siberian Math. J., 2005, vol. 46, no. 3, pp. 373–385. doi: 10.1007/s11202-005-0040-z 

11.   Bourbaki N. Elements of mathematics: Functions of a real variable. Berlin: Springer, 2004, 338 p. doi: 10.1007/978-3-642-59315-4 . Translated to Russian under the title Funktsii deistvitel’nogo peremennogo. Moscow: Nauka Publ., 1965, 424 p.

12.   Dzyadyk V.K. Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami [Introduction to the theory of uniform approximation of functions by polynomials]. Moscow: Nauka Publ., 1977, 511 p.

13.   Trefethen L.N. Approximation theory and approximation practice. Philadelphia: SIAM, 2013, 318 p. ISBN: 978-1-611972-39-9 .

14.   Baltensperger R., Berrut J.-P., No$\ddot{\mathrm{e}}$l B. Exponential convergence of a linear rational interpolant between transformed Chebyshev points. Math. Comput., 1999, vol. 68, no. 227, pp. 1109–1120. doi: 10.1090/S0025-5718-99-01070-4 

15.   Semisalov B.V. Non-local algorithm of finding solution to the Poisson equation and its applications. Zh. Vychisl. Mat. Mat. Fiz., 2014, vol. 54, no. 7, pp. 1110–1135 (in Russian). doi: 10.7868/S0044466914020136 

Cite this article as: B.V. Semisalov, G.A. Kuzmin. On the question of approximation of smooth functions with boundary layer components, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 4, pp. 111–124.