A.I. Korotkii, Yu.V. Starodubtseva, I.A. Tsepelev. Gravitational flow of a two-phase viscous incompressible liquid ... P. 61-73

Many natural phenomena and processes, such as lava flows during extrusive eruptions of volcanoes, mudflows, rock landslides, and snow avalanches, can have catastrophic consequences for the life and activities of humans and animals. Mathematical modeling of such problems is an important scientific problem. All these and many other phenomena and processes can be represented by models of the gravitational flow of a viscous incompressible fluid. The main driving forces in the evolution of these flows are the forces of gravitation, viscous friction, and interphase interaction. For the mathematical description of such processes, we propose mathematical models of the motion of a two-phase viscous incompressible fluid. One phase of such a fluid is a viscous incompressible fluid (viscous phase) itself, and the other phase is an incompressible fluid with low density and low viscosity, which will be called air for convenience. The introduction of the air phase makes it possible to slightly simplify the mathematical model for the total fluid flow and simplify the boundary conditions for it. The mathematical model includes the Navier–Stokes equation, the incompressibility equation, the viscous phase transfer equation, and the corresponding initial and boundary value conditions. The introduced mathematical models are studied. It is established that the corresponding initial–boundary value problems are well-posed. Theorems on the solvability in the generalized (weak) sense are proved for initial–boundary value problems. The dependence of the solution on the initial data and some parameters of the model is investigated.

Keywords: viscosity, viscous liquid, incompressible liquid, multiphase liquid, Navier–Stokes equation, transfer equation, generalized solution

Received July, 2021

Revised August 9, 2021

Accepted September 13, 2021

Funding Agency: This work was supported jointly by the Russian Foundation for Basic Research and the German Research Society (project no. 20-51-12002).

Alexander Illarionovich Korotkii, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: korotkii@imm.uran.ru

Yulia Vladimirovna Starodubtseva, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: starodubtsevayv@yandex.ru

Igor Anatolievich Tsepelev, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: tsepelev@imm.uran.ru

REFERENCES

1.   Romanova D.I. 3D avalanche flow modeling using OpenFOAM. Proceedings of ISP RAS, 2017, vol. 29, no. 1, pp. 85–100 (in Russian). doi: 10.15514/ISPRAS-2017-29(1)-6 

2.   Tsepelev I., Ismail-Zadeh A., Melnik O., Korotkii A. Numerical modelling of fluid flow with rafts: An application to lava flows. J. Geodynamics, 2016, vol. 97, pp. 31–41. doi: 10.1016/j.jog.2016.02.010 

3.   Malneva I.V., Kononova N.K., Krestin B.M. Features of development of hazardous natural processes on the greater Sochi territory in compliance with modern climate change. Sustainable Development of Mountain Territories, 2016, vol. 8, no. 1, pp. 73–80 (in Russian).
doi: 10.21117/1998-4502-2016-8-1-73-80 

4.   Ismail-Zadeh A., Takeuchi K. Preventive disaster management of extreme natural events. Nat. Hazards, 2007, vol. 42, no. 3, pp. 459–467. doi: 10.1007/s11069-006-9075-0 

5.   Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press, 1961, 652 p. ISBN: 048664071X .

6.   Landau L.D., Lifshitz E.M. Fluid mechanics. Oxford: Pergamon Press, 1987, 539 p. ISBN: 9781483161044 . Original Russian text published in Landau L.D., Lifshits E.M. Gidrodinamika, Moscow: Nauka Publ., 1986, 736 p.

7.   Prosperetti A., Tryggvason G. Computational methods for multiphase flow. Cambridge: Cambridge University Press, 2007, 470 p. doi: 10.1017/CBO9780511607486 

8.   Kolev N.I. Multiphase flow dynamics. Berlin; Heidelberg: Springer-Verlag, 2011, 781 p. doi: 10.1007/978-3-642-21372-4 

9.   Nigmatulin R.I. Dynamics of multiphase media. Part 1. NY: Hemisphere Pub. Corp., 1991, 532 p. ISBN: 0891163166 . Original Russian text published in Nigmatulin R.I. Dinamika mnogofaznykh sred, Part 1, Moscow: Nauka Publ., 1987, 464 p.

10.   Ladyzhenskaya O.A. The mathematical theory of viscous incompressible flow. NY: Gordon and Breach, 1987, 224 p. ISBN: 0677207603 . Original Russian text published in Ladyzhenskaya O.A. Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Moscow: Nauka Publ., 1970, 288 p.

11.   Ismail-Zadeh A.T., Naimark B.M., Lobkovsky L.I. Hydrodynamics model of sedimentary basins formation based on development and subsequent phase transformation of a magmatic lens in the upper mantle. Computational Seismology and Geodynamics, 1996, vol. 3, pp. 42–53. doi: 10.1029/CS003p0042 

12.   Volozh Y.A., Talbot C.J., Ismail-Zadeh A.T. Salt structures and hydrocarbons in the Pricaspian basin. American Association of Petroleum Geologist Bulletin, 2003, vol. 87, no. 2, pp. 313–334. doi: 10.1306/09060200896 

13.   Temam R. Navier-Stokes equations: Theory and numerical analysis. Amsterdam: North-Holland, 1979, 529 p. ISBN: 0444853073 . Translated to Russian under the title Uravneniya Nav’e-Stoksa: Teoriya i chislennyi analiz, Moscow: Mir Publ., 1981, 408 p.

14.   Lions J.-L. Quelques methodes de resolution des probl`emes aux limites non lineaires [Some methods of solving non-linear boundary value problems]. Paris: Dunod, Gauthier-Villars, 1969, 554 p. Translated to Russian under the title Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow: Mir Publ., 1972, 587 p.

15.   Fursikov A.V. Optimal control of distributed systems. Theory and applications. Providence: American Mathematical Soc., 1999, 305 p. ISBN: 082189790X . Original Russian text published in Fursikov A.V. Optimal’noe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Novosibirsk: Nauchnaya Kniga Publ., 1999, 360 p.

16.   Alekseev G.V., Tereshko D.A. Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti [Analysis and optimization in viscous fluid dynamics]. Vladivostok: Dal’nauka, 2008, 365 p.

17.   Antontsev S.N., Kazhikhov A.V., Monakhov V.N. Boundary value problems in mechanics of nonhomogeneous fluids. Amsterdam: North-Holland, 1990, 309 p. doi:10.1016/s0168-2024(08)x7006-7 . Original Russian text published in Antontsev S.N., Kazhikhov A.V., Monakhov V.N. Kraevye zadachi mekhaniki neodnorodnykh zhidkostei. Novosibirsk: Nauka Publ., 1983, 320 p.

18.   Kazhikhov A.V. Izbrannye trudy: Matematicheskaya gidrodinamika [Selected works: Mathematical hydrodynamics]. Novosibirsk: Izd-vo Instituta Gidrodinamiki im. M.A. Lavrentjeva SO RAN, 2008, 420 p. ISBN: 978-5-94671-007-7 .

19.   Ismail-Zadeh A., Korotkii A., Schubert G., Tsepelev I. Numerical techniques for solving the inverse retrospective problem of thermal evolution of the Earth interior. Computers and Structures, 2009, vol. 87, no. 11-12, pp. 802–811. doi: 10.1016/j.compstruc.2009.01.005 .

20.   Ismail-Zadeh A., Korotkii A., Tsepelev I. Data-driven numerical modelling in geodynamics: methods and applications. Berlin: Springer Intern. Publ., 2016, 105 p. doi: 10.1007/978-3-319-27801-8 .

Cite this article as: I.A. Tsepelev, A.I. Korotkii, Yu.V.Starodubtseva. Gravitational flow of a two-phase viscous incompressible liquid, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 4, pp. 61–73.