P.G. Surkov. Real-time calculation of a Caputo fractional derivative from noisy data. The case of continuous measurements ... P. 238-248

We consider the problem of finding the derivative of a function, which is a classical problem of mathematical analysis. The values of the function are measured continuously over a finite time interval with some error. We propose an algorithm for the approximate calculation of a Caputo fractional derivative from the measurement values based on the methods of feedback control theory. First, the problem of calculating the fractional derivative is replaced by an inverse problem for a control system. Then the method of dynamic inversion is applied to the inverse problem, which allows us to construct a real-time solution algorithm stable under information noises and computational errors. The algorithm is based on N. N. Krasovskii’s extremal aiming method, which is widely known in the theory of guaranteed control, and on a local modification of A. N. Tikhonov’s classical regularization method with a smoothing functional. The order of convergence of the proposed algorithm is obtained, and a numerical example illustrating the application of the developed technique for calculating fractional Caputo derivatives of specific functions in real time is considered.

Keywords: Caputo fractional derivative, reconstruction, incomplete information, error estimate

Received March 5, 2021

Revised April 2, 2021

Accepted April 12, 2021

Platon Gennad’evich Surkov, Cand. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: spg@imm.uran.ru

REFERENCES

1.   Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. N Y: Elsevier, 2006, 540 p. ISBN: 0444518320 .

2.   Stechkin S.B. Best approximation of linear operators. Math. Notes, 1967, vol. 1, no. 2, pp. 91–99. doi: 10.1007/BF01268056 

3.   Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems. Russian Mathematical Surveys, 1996, vol. 51, no. 6. pp. 1093–1126. doi: 10.1070/RM1996v051n06ABEH003001 

4.   Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications. Inverse and Ill-Posed Problems Series. Utrecht: VSP, 2002, 281 p. ISBN: 90-6764-367-X/hbk . Original Russian text published in Ivanov V.K., Vasin V.V., Tanana V.P. Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya. Moscow: Nauka Publ., 1978, 208 p.

5.   Tikhonov A.N., Arsenin V.Ya. Methods for solutions of ill-posed problems. N Y: Wiley, 1977, 258 p. ISBN: 0470991240 . Original Russian text (2nd ed.) published in Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach. Moscow: Nauka Publ., 1979, 285 p.

6.   Vasin V.V. The stable evaluation of a derivative in space C(-∞,∞). U.S.S.R. Comput. Math. Math. Phys., 1973, vol. 13, no. 6, pp. 16–24. doi: 10.1016/0041-5553(73)90002-5 

7.   Skorik G.G. On the best error estimate for the method of averaging kernels in the problem of the differentiation of a noisy function. Russian Math. (Iz. VUZ), 2004, vol. 48, no. 3, pp. 70–74.

8.   Hanke M., Scherzer O. Inverse problems light: numerical differentiation. The American Mathematical Monthly, 2001, vol. 108, no. 6, pp. 512–521. doi: 10.2307/2695705 

9.   Wang Y.B., Jia X.Z., Cheng J. A numerical differentiation method and its application to reconstruction of discontinuity. Inverse Problems, 2002, vol. 18, no. 6, pp. 1461–1476. doi: 10.1088/0266-5611/18/6/301 

10.   Chartrand R. Numerical differentiation of noisy, nonsmooth data. ISRN Applied Mathematics, 2011, vol. 2011, art. ID 164564. doi: 10.5402/2011/164564 

11.   Oldham K., Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order. N Y: Acad. Press, 1974, 251 p. ISBN: 9780080956206 

12.   Murio D.A. On the stable numerical evaluation of Caputo fractional derivatives. Computers Math. Appl., 2006, vol. 51, no. 9, pp. 1539–1550. doi: 10.1016/j.cawa.2005.11.037 

13.   Pandolfi L. A Lavrent’ev-type approach to the on-line computation of Caputo fractional derivatives. Inverse problems, 2008, vol. 24, no. 1. art. ID 015014. doi: 10.1088/0266-5611/24/1/015014 

14.   Kryazhimskii A.V., Osipov Yu.S. Best approximation of the differentiation operator in the class of nonanticipatory operators. Mathematical notes of the Academy of ciences of the USSR, 1985, vol. 37, pp. 109–114. doi: 10.1007/B01156754 

15.   Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions. Basel: Gordon and Breach, 1995, 625 p. ISBN: 2881249442 .

16.   Maksimov V.I., Pandolfi L. The reconstruction of unbounded controls in non-linear dynamical systems. J. Appl. Math. Mech., 2001, vol. 65, no. 3, pp. 371–376. doi: 10.1016/S0021-8928(01)00042-9 

17.   Melnikova L., Rozenberg V. One dynamical input reconstruction problem: Tuning of solving algorithm via numerical experiments. AIMS Mathematics, 2019, vol. 4, no. 3, pp. 699–713. doi: 10.3934/math.2019.3.699 

18.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. New York: Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text published in Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry. Moscow: Nauka Publ., 1974, 456 p.

19.   Surkov P.G. Dynamic right-hand side reconstruction problem for a system of fractional differential equations. Diff. Eq., 2019, vol. 55, no. 6. pp. 849–858. doi: 10.1134/S0012266119060120 

20.   Maksimov V.I. Calculation of the derivative of an inaccurately defined function by means of feedback laws. Proc. Steklov Institute Math., 2015, vol. 291, pp. 219–231. doi: 10.1134/S0081543815080179 

21.   Gomoyunov M.I. Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems. Fractional Calculus and Applied Analysis, 2018, vol. 21, no. 5, pp. 1238–1261. doi: 10.1515/fca-2018-0066 

22.   Shao J., Meng F. Gronwall – Bellman type inequalities and their applications to fractional differential equations. Abstract and Applied Analysis, 2013, vol. 2013, art. ID 217641, 7 p. doi: 10.1155/2013/217641 

23.   Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem [Methods for dynamical reconstruction of inputs of controlled systems]. Yekaterinburg, IMM UrO RAN, 2011, 292 p.

Cite this article as: P.G. Surkov. Real-time calculation of a Caputo fractional derivative from noisy data. The case of continuous measurements, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 238–248; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2021, Vol. 315, Suppl. 1, pp. S225–S235.