N.N. Petrov. Matrix resolving functions in a linear problem of group pursuit with multiple capture ... P. 185-196

A problem of pursuit of one or several evaders by a group of pursuers is considered in a finite-dimensional Euclidean space. The problem is described by the system
$$
\dot z_{ij} = A_{ij} z_{ij} + u_i - v_j,\ \  u_i \in U_i,\ \  v_j \in V_j.
$$
The aim of the group of pursuers is to capture at least $q$ evaders, where each evader must be captured by at least $m$ different pursuers; the capture moments may be different. The terminal sets are the origin. Matrix resolving functions, which generalize scalar resolving functions, are used as a mathematical basis. Sufficient conditions for the multiple capture of one evader in the class of quasi-strategies are obtained. Under the assumption that the evaders use program strategies and each pursuer captures at most one evader, sufficient conditions for the solvability of the problem on the multiple capture of a given number of evaders are obtained in terms of the initial positions. Hall's theorem on a system of distinct representatives is used to prove the main theorem. Examples are given to illustrate the obtained results.

Keywords: differential game, pursuer, evader, group pursuit

Received January 14, 2021

Revised February 12, 2021

Accepted February 22, 2021

Funding Agency: This research was funded by the Ministry of Science and Higher Education of the Russian Federation in the framework of state assignment No. 075-00232-20-01, project FEWS-2020-0010 and under grant 20-01-00293 from the Russian Foundation for Basic Research.

Nikolai Nikandrovich Petrov, Dr. Phys.-Math. Sci., Prof., Udmurt State University, Izhevsk, 426034 Russia, e-mail: kma3@list.ru

REFERENCES

1.   Isaacs R. Differential games. N Y: John Wiley & Sons, 1965, 384 p. ISBN: 0471428604 .

2.   Krasovskii N.N., Subbotin A.I. Pozicionnye differencial’nye igry [Positional differential games]. Moscow: Nauka Publ., 1974, 458 p.

3.   Krasovskii N.N. Upravlenie dinamicheskoi sistemoi [Control of a dynamical system]. Moscow: Nauka Publ., 1985, 516 p.

4.   Subbotin A.I., Chentsov A.G. Optimizatsiya garantii v zadachakh upravleniya [Guarantee optimization in control problems]. Moscow: Nauka Publ., 1981, 288 p.

5.   Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions. Basel: Gordon & Breach, 1995, 625 p.

6.   Pontryagin L.S. Izbrannye nauchnye trudy. T. 2 [Selected scientific works. Vol. 2]. Moscow: Nauka Publ., 1988, 576 p.

7.   Chikrii A.A. Conflict-controlled processes. Boston; London; Dordrecht: Kluwer Acad. Publ., 1997, 424 p. doi: 10.1007/978-94-017-1135-7 . Original Russian text published in Chikrii A.A. Konfliktno upravlyamye protsessy. Kiev: Nauk. Dumka Publ., 1992, 384 p.

8.   Chikrii A.A. Quasilinear controlled processes under conflict. J. Math. Sci., 1996, vol. 80, no. 1, pp. 1489–1518. doi: 10.1007/BF02363923 

9.   Grigorenko N.L. Matematicheskie metody upravleniya neskol’kimi processami [Mathematical methods for control of several dynamic processes]. Moscow: Moscow State University, 1990, 197 p. ISBN: 5-211-00954-1 .

10.   Pshenichnyi B.N. Simple pursuit by several objects. Kibernetika, 1976, no. 3, pp. 145–146 (in Russian).

11.   Blagodatskikh A.I., Petrov N.N. Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob’ektov [Conflict interaction of groups of controlled objects]. Izhevsk: Udmurt. State Univ. Publ., 2009, 266 p. ISBN: 978-5-904524-17-3 .

12.   Chikrii A.A., Rappoport I.S. Method of resolving functions in the theory of conflict-controlled processes. Cybernetics and Systems Analysis, 2012, vol. 48, no. 4, pp. 512–531. doi: 10.1007/s10559-012-9430-y 

13.   Rappoport J.S. Strategies of group approach in the method of resolving functions for quasilinear conflict-controlled processes. Cybernetics and Systems Analysis, 2019, vol. 55, no. 1, pp. 128–140. doi: 10.1007/s10559-019-00118-7 

14.   Petrov N.N., Solov’eva N.A. Multiple capture of given number of evaders in linear recurrent differential games. J. Optim. Theory Appl., 2019, vol. 182, no. 1, pp. 417–429. doi: 10.1007/s10957-019-01526-7 

15.   Petrov N.N. The task of simple group pursuit with phase constraints in time scales. Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2020, vol. 30, no. 1, pp. 249–258 (in Russian). doi: 10.35634/vm200208 

16.   Petrov N.N., Machtakova A.I. Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2020, vol. 56, pp. 50–62 (in Russian).
doi: 10.35634/2226-3594-2020-56-05 

17.   Petrov, N.N., Solov’eva, N.A. Problem of group pursuit in linear recurrent differential games. J. Math. Sci. (United States), 2018, vol. 230, no. 5, pp. 732–736. doi: 10.1007/s10958-018-3779-z 

18.   Chikrii A.A., Chikrii G.Ts. Matrix resolving functions in game problems of dynamics. Proc. Steklov Instit. Math., 2014, vol. 291, suppl. 1, pp. 56–65. doi: 10.1134/S0081543815090047 

19.   Chikrii A.A., Chikrii G.Ts. Matrix resolving functions in dynamic pursuit games. Cybernetics and Systems Analysis, 2014, vol. 50, no. 2, pp. 201–217. doi: 10.1007/s10559-014-9607-7 

20.   Chikrii A. A. An analytical method in dynamic pursuit games. Proc. Steklov Instit. Math., 2010, vol. 271, pp. 69–85. doi: 10.1134/S0081543810040073 

21.   Aubin J.-P., Frankowska H. Set-valued analysis. Boston; Basel; Berlin: Birkh$\ddot{\mathrm{a}}$user, 1990, 461 p. ISBN: 0817634789 .

Cite this article as: N.N. Petrov. Matrix resolving functions in a linear problem of group pursuit with multiple capture, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 185–196.