A.M. Denisov. On the uniqueness of a solution to the problem of finding a composite source in the heat equation ... P. 120-127

An initial–boundary value problem is considered for a two-dimensional heat equation with a source. The source is composite; namely, it is the sum of two unknown functions of spatial variables multiplied by given power functions of time. An inverse problem is posed, which consists in determining the two unknown functions from additional information about the solution of the initial–boundary value problem, which is a function of time and of one of the spatial variables. It is shown that such an inverse problem has an infinite set of solutions in the general case. Theorems on the uniqueness of a solution of the inverse problem in some special classes of unknown functions are proved.

Keywords: heat equation, unknown source, inverse problem, uniqueness of solution

Received January 21, 2021

Revised February 5, 2021

Accepted February 8, 2021

Funding Agency: This work was supported by the Moscow Center for Fundamental and Applied Mathematics.

Aleksandr Mikhailovich Denisov, Dr. Phys.-Math. Sci., Prof., Lomonosov Moscow State University, Moscow, 119992 Russia, e-mail: den@cs.msu.ru

REFERENCES

1.   Tikhonov A.N. Uniqueness theorems for the heat equation. Dokl. Academy of Sciences of the USSR, 1935, vol. 1, no. 5, pp. 294–300 (in Russian).

2.   Lavrent’ev M.M., Romanov V.G., Shishatskii S.P. Ill-posed problems of mathematical physics and analysis. Providence: AMS, 1986, 290 p. ISBN: 0821898140 . Original Russian text published in Lavrent’ev M.M., Romanov V.G., Shishatskii S.P. Nekorrektnye zadachi matematicheskoi fiziki i analiza. Novosibirsk: Nauka Publ., 1980, 285 p.

3.   Romanov V.G. Inverse problems of mathematical physics. Utrecht: VNU Science Press, 1987, 239 p. ISBN: 90-6764-056-5 . Original Russian text published in Romanov V.G. Obratnye zadachi matematicheskoi fiziki. Moscow: Nauka Publ., 1984, 252 p.

4.   Alifanov O.M. Obratnye zadachi teploobmena [Inverse heat transfer problems]. Moscow: Mashinostroenie Publ., 1988, 280 p. ISBN: 5-217-00134-8 .

5.   Denisov A.M. Vvedenie v teoriyu obratnykh zadach [Introduction to the theory of inverse problems]. Moscow: MGU Publ., 1994, 206 p. ISBN: 5-211-03079-6 .

6.   Osipov Y.S., Vasil’ev F.P., Potapov M.M. Osnovy metoda dinamicheskoi regulyarizatsii [The basics of the dynamic regularization method]. Moscow: MGU Publ., 1999, 238 p. ISBN: 5-211-04085-6 .

7.   Osipov Yu.S., Kryazhimskiy A.V., Maksimov V.I. Dynamic inverse problems for parabolic systems. Differ. Equ., 2000, vol. 36, no. 5, pp. 643–661. doi: 10.1007/BF02754222 

8.   Prilepko A.I., Orlovsky D.G., Vasin I.V. Methods for solving inverse problems in mathematical physics. N Y: Marcel Dekker, 2000, 744 p. ISBN: 0-8247-1987-5 .

9.   Isakov V. Inverse problems for partial differential equations. N Y: Springer, 2006, 406 p. ISBN: 978-0-387-32183-7 .

10.   Kabanikhin S.I. Obratnye i nekorrektnye zadachi [Inverse and ill-posed problems]. Novosibirsk: SO RAN Publ., 2018, 512 p. ISBN: 978-5-7692-1607-7 .

11.   Lavrent’ev M.M., Romanov V.G., Vasil’ev V.G. Multidimensional inverse problems for differential equations. Berlin; Heidelberg: Springer-Verlag, 1970, 58 p. ISBN: 978-3-540-36404-7 . Original Russian text published in Lavrent’ev M.M., Romanov V.G., Vasil’ev V.G. Mnogomernye obratnye zadachi dlya differentsial’nykh uravnenii. Novosibirsk: Nauka Publ., 1969, 67 p.

12.   Cannon J.R., Perez-Esteva S. Uniqueness and stability of 3D heat sources. Inverse Problems, 1991, vol. 7, no. 1, pp. 57–62. doi: 10.1088/0266-5611/7/1/006 

13.   Prilepko A.I., Kostin A.B. On certain inverse problems for parabolic equations with final and integral observation. Russian Acad. Sci. Sb. Math., 1993, vol. 75, no. 2, pp. 473–490. doi: 10.1070/SM1993v075n02ABEH003394 

14.   Cannon J.R., Du Chateau P. Structural identification of an unknown source term in a heat equation. Inverse Problems, 1998, vol. 14, no. 3, pp. 535–551. doi: 10.1088/0266-5611/14/3/010 

15.   Prilepko A.I., Tkachenko D.S. Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination. Comput. Math. Math. Phys., 2003, vol. 43, no. 4, pp. 537–546.

16.   Choulli M., Yamamoto M. Conditional stability in determining a heat source. J. Inverse Ill-Posed Pr., 2004, vol. 12, no. 3, pp. 233–243. doi: 10.1515/1569394042215856 

17.   Denisov A.M. Problems of determining the unknown source in parabolic and hyperbolic equations. Comput. Math. Math. Phys., 2015, vol. 55, no. 5, pp. 829–833. doi: 10.1134/S0965542515050085 

18.   Denisov A.M. Uniqueness and nonuniqueness of the solution to the problem of determining the source in the heat equation. Comput. Math. Math. Phys., 2016, vol. 56, no. 10, pp. 1737–1742. doi: 10.1134/S0965542516100067 

19.   Solov’ev V.V. On determining sources with compact supports in a bounded plane domain for the heat equation. Comput. Math. Math. Phys., 2018, vol. 58, no. 5, pp. 750–760. doi: 10.1134/S0965542518050159 

20.   Bers L., John F., Schechter M. Partial differential equations. New York: Interscience, 1964, 343 p. ISBN: 0821896989 . Translated to Russian under the title Uravneniya s chastnymi proizvodnymi. Moscow: Mir Publ., 1966, 352 p.

Cite this article as: A.M. Denisov. On the uniqueness of a solution to the problem of finding a composite source in the heat equation, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 120–127.