In this paper, we give a geometric interpretation and a geometric proof of the necessary condition for the existence of a constrained extremum. The presented approach can be applied to finding constrained extrema of nondifferentiable functions (i.e., when Lagrange's method of undetermined multipliers is not applicable in the ``classical'' form). The following examples are considered: the inequality of arithmetic and geometric means, Young's inequality for products, and Jensen's inequality.
Keywords: constrained extremum, level surface, Lagrange multipliers.
Received January 9, 2020
Revised October 7, 2020
Accepted October 26, 2020
Dmitry Sergeevich Telyakovskii, Cand. Sci. (Phys.-Math.), Prof., National Research Nuclear University (MEPhI), Moscow, 115409 Russia, e-mail: dtelyakov@mail.ru
Sergey Alexandrovich Telyakovskii, Dr. Phys.-Math. Sci., Prof., Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991 Russia, e-mail: sergeyaltel@yandex.ru
REFERENCES
1. Mordukhovich Boris S. Variational analysis and generalized differentiation, I: Basic theory. Ser. Grundlehren der mathematischen Wissenschaften, vol. 330, Berlin: Springer-Verlag, 2006, 579 p.
2. Vinter Richard. Optimal control. Boston: Birkhauser, 2010, 507 p.
3. Santambrogio Filippo. Optimal transport for applied mathematicians: Calculus of variations, PDEs, and modeling, Ser. Progress in Nonlinear Differential Equations and Their Applications, vol. 87, Basel: BirkhЈauser, 2015, 353 p.
4. Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski R.R. Nonsmooth analysis and control theory. Ser. Graduate Texts in Math., N Y: Springer-Verlag, 1998, 278 p.
5. Polovinkin E.S., Balashov M.V. Elementy vypuklogo i sil’no vypuklogo analiza [Elements are convex and strongly convex analysis], Moscow: Fizmatlit Publ., 2004, 416 p.
6. Courant R. Differential and integral calculus, vol. 2. Ishi Press, 2010, 692 p. ISBN: 978-4871878357 . Translated to Russian under the title Kurs differencial’nogo i integral’nogo ischisleniya, vol. 2. Moscow: Nauka Publ., 1970, 672 p.
7. Kudryavtsev L.D. Matematicheskii analiz [Mathematical analysis], vol. 2., Moscow: Drofa Publ., 2004, 720 p.
8. Shilov G.E. Matematicheskii analiz. Funktsii neskol’kikh veshchestvennykh peremennykh [Mathematical analysis. Functions of several real variables]. Moscow: Nauka Publ., 1972, 624 p.
9. Lowan A.N. Note on an elementary method for generating inequalities. Scripta Mathematica, 1955, vol. 21, no. 2–3, pp. 218–220.
10. Balk M.B. Geometricheskie prilozheniya ponyatiya o tsentre tyazhesti [Geometricheskie prilozheniya ponyatiya o centre tyazhesti]. Moscow: Fizmatlit, 1959, 230 p.
Cite this article as: D.S. Telyakovskii, S.A. Telyakovskii. Geometric approach to finding the conditional extrema, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 4, pp. 244–254.