Yu.N. Subbotin, V.T. Shevaldin. A method of construction of local parabolic splines with additional knots ... P. 205-219

We propose a general method for the construction of local parabolic splines with an arbitrary arrangement of knots for functions given on grid subsets of the numerical axis or its segment. Special cases of this scheme are Yu.N. Subbotin's and B.I. Kvasov's splines. For Kvasov's splines, we consider boundary conditions different from those suggested by Kvasov. We study the approximating and smoothing properties of these splines in the case of uniform knots. In particular, we find two-sided estimates of the error of approximation of the function classes $W_{\infty}^2$ and $W_{\infty}^3$ by these splines in the uniform metric and calculate the exact uniform Lebesgue constants and the norms of the second derivatives on the class $W_{\infty}^2$. These properties are compared with the corresponding properties of Subbotin's splines.

Keywords: local parabolic splines, approximation, interpolation, equally spaced knots

Received February 8, 2019

Revised March 26, 2019

Accepted April 1, 2019

Yurii Nikolaevich Subbotin, RAS Corresponding Member, Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: yunsub@imm.uran.ru

Shevaldin Valerii Trifonovich, Dr.Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia. e-mail: Valerii.Shevaldin@imm.uran.ru

REFERENCES

1.   Subbotin Yu.N. Heritance of monotonisity and convexity properties under local approximation. J. Comp. Math. and Math. Physics, 1993, vol. 37, no. 7, pp. 996–1003 (in Russian).

2.   Shevaldin V.T. Approximation by local parabolic splines with arbitrary knots. Sib. Zh. Vychisl. Mat., 2005, vol. 6, no 1, pp. 77–88 (in Russian).

3.   Shevaldin V.T. Approksimatsiya lokal’nymi splainami [Local approximation by splines]. Ekaterinburg: Ural Branch of RAS Publ., 2014, 198 p.

4.   Kobylkin K.S. The use of shape-preserving splines for estimating the density of distribution of land between peasant farms after the reform 1863. Vestnik Ural. Inst. Ekonomiki, Upravleniya i Prava, 2010, no 3, pp. 94–99 (in Russian).

5.   Getmanov V.G. Evaluation of spline functions for digital filtering problems. J. Comput. Syst. Sci. Int., 2016, vol. 55, no. 5, pp. 725–734. doi: 10.1134/S1064230716040079 

6.   Pravdin S.F. A method of solving reaction-diffusion problem on a non-symmetrical model of the cardiac left ventricle. CEUR Workshop Proc., vol. 1662. Proc. 47th Int. Youth School-Conf. “Modern Problems in Mathematics and its Applications”, Yekaterinburg, Russia, 31 January – 6 February, 2016, pp. 284–296 (in Russian).

7.   Kvasov B.I. Interpolation by parabolic Hermite splines. Soviet Math. (Izvestiya VUZ. Matematika), 1984, vol. 28, no. 5, pp. 29–37.

8.   Lyche T., Schumaker L.L. Local spline approximation methods. J. Approx. Theory, 1975, vol. 15, no 4, pp. 294–325. doi: 10.1016/0021-9045(75)90091-X 

9.   Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splain-funktsii [Methods of spline functions]. Moscow: Nauka Publ., 1980, 355 p.

10.   Kvasov B.I. Metody izogeometricheskoi approksimatsii splainami [Methods of Shape-Preserving Spline Approximaton]. Moscow: Fizmatlit Publ., 2006, 360 p. ISBN: 5-9221-0733-X .

11.   Korneichuk N.P. Splajny v teorii priblizheniya [Splines in approximation theory]. Moscow: Nauka Publ., 1984, 352 p.

Cite this article as: Yu.N.Subbotin, V.T.Shevaldin. A method of construction of local parabolic splines with additional knots, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 2, pp. 205–219.