We consider two reproducing kernel Hilbert spaces $H_1$ and $H_2$ consisting of complex-valued functions given on some sets $\Omega_1\subset {\mathbb C}^n$ and $\Omega_2\subset {\mathbb C}^m$, respectively. The norms in $H_1$ and $H_2$ have integral form:
$$ \| f\|_{H_1}^2=\int_ {\Omega_1}|f (z)|^2\, d\mu(z), \ \ f\in H_1;\ \ \ \ \ \| q\|_{H_2}^2=\int_{\Omega_2}|q(t)|^2\,d\nu(t), \ \ q\in H_2. $$
Let $\{E(\cdot,z)\}_{z\in \Omega_2}$ be some complete system of functions in the space $H_1$. Define
\begin{align*}
\widetilde f(z)\stackrel{\rm def}{=}(E(\cdot, z), f)_{H_1}\ \forall z\in \Omega_2,\ \ \widetilde H_1=\{\widetilde f,\, f\in H_1\},
(\widetilde f_1,\widetilde f_2)_{\widetilde H_1}\stackrel{\rm def}{=}(f_2,f_1)_{H_1},
\|\widetilde f_1\|_{\widetilde H_1}=\|f_1\|_{H_1}\ \ \forall \widetilde f_1,\widetilde f_2\in \widetilde H_1.
\end{align*}
We study the question of coincidence of the spaces $\widetilde H_1$ and $H_2$, i.e., the conditions under which these spaces consist of the same functions and have equal norms. The following criterion of coincidence is obtained: $\widetilde H_1=H_2$ if and only if there exists a linear continuous one-to-one unitary operator ${\cal A}$ from $\overline H_1$ onto $H_2$ that for any $\xi\in \Omega_1$ takes the function $K_{\overline H_1}(\cdot,\xi)$ to the function $E(\xi,\cdot)$. Here $\overline H_1$ is the space consisting of the complex conjugates of functions from $H_1$ and $K_{\overline H_1}(t,\xi)$, $t,\xi\in \Omega_1$, is the reproducing kernel of the space $\overline H_1$. We also obtain some equivalent statements and a criterion for the coincidence of $H_1$ and $H_2$.
Keywords: Bargmann-Fock space, operator of multiplication by a function, expansion systems similar to orthogonal systems, reproducing kernel Hilbert space
Received January 31, 2019
Revised March 27, 2019
Accepted April 29, 2019
Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 17-41-020070).
Valentin Vasilievich Napalkov, Dr. Phys.-Math. Sci., Prof., Corresponding Member of RAS, Institute of Mathematics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450077 Russia, e-mail: napalkov@matem.anrb.ru
Valerii Valentinovich Napalkov, Cand. Sci. (Phys.-Math.), Institute of Mathematics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450077 Russia, e-mail: vnap@mail.ru
REFERENCES
1. Aronszajn N. Theory of reproducing kernels. Transactions of the AMS, vol. 68, no. 3, pp. 337–404. doi: 10.1090/S0002-9947-1950-0051437-7
2. Berlinet A., Thomas–Agnan C. Reproducing kernel Hilbert spaces in probability and statistics. N Y: Kluwer Acad. Publ., 2004, 355 p. ISBN: 1-4020-7679-7 .
3. Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math., 1961, vol. 1, no. 14, pp. 187–214. doi: 10.1002/cpa.3160140303
4. Napalkov (Jr.) V.V., Yulmukhametov R. S. Weighted Fourier–Laplace transforms of analytic functionals on the disk. Russian Acad. Sci. Sb. Math., 194, vol. 77, no. 2, pp. 385–390. doi: 10.1070/SM1994v077n02ABEH003447
5. Napalkov (Jr.) V.V., Yulmukhametov R.S. On the Hilbert Transform in Bergman Space. Math. Notes, 2001, vol. 70, no. 1, pp. 61–70. doi: 10.1023/A:1010221901553
6. Isaev K.P., Yulmukhametov R.S. Laplace transforms of functionals on Bergman spaces. Izv. Math., 2004, vol. 68, no. 1, pp. 3–41. doi: 10.1070/IM2004v068n01ABEH000465
7. Bogoliubov N.N., Logunov A.A., Oksak A.I., Todorov I.T. General principles of quantum field theory. Dordrecht; Boston: Kluwer Acad. Publ., 1990, 695 p. ISBN: 978-0-7923-0540-8 . Original Russian text published in Bogolyubov N.N., Logunov A.A., Oksak A.I., Todorov I.T. Obshchie printsipy kvantovoi teorii polya, Moscow: Nauka Publ., 1977, 616 p.
8. Lukashenko T.P. Properties of expansion systems similar to orthogonal ones. Izvestiya: Mathematics, 1998, vol. 62, no. 5, pp. 1035–1054. doi: 10.1070/IM1998v062n05ABEH000215
9. Napalkov V.V. (Jr.) Orthosimilar expansion systems in space with reproducing kernel. Ufa Math. J., vol. 5, no. 4, pp. 88–100. doi: 10.13108/2013-5-4-88
10. Dunford N.J, Schwartz J.T. Linear operators. I. General theory. Ser. Pure Appl. Math. 1958, Vol. 7, N Y; London: Interscience Publ., 858 p. Translated to Russian under the title Lineinye operatory. Obshchaya teoriya, Mockow, Inostrannaya Literatura Publ., 1962, 896 p.
11. Napalkov V.V., Napalkov V.V. (Jr.) On isomorphism of reproducing kernel Hilbert spaces. Dokl. Math., 2017, vol. 95, no. 3, pp. 270–272. doi: 10.1134/S1064562417030243
Cite this article as: V.V.Napalkov, V.V.Napalkov (Jr.). On the coincidence of reproducing kernel Hilbert spaces connected by a special transformation, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 2, pp. 149–159 .