A.M. Kagazezheva. On a vertex-symmetric graph with intersection array {205, 136, 1; 1, 68, 205}

A. Makhnev and D. Paduchikh found intersection arrays of distance-regular graphs that are locally strongly regular with the second eigenvalue 3. A. Makhnev and M. Samoilenko added to this list the intersection arrays {196, 76, 1; 1, 19, 196} and {205, 136, 1; 1, 68, 205}. However, graphs with these intersection arrays cannot be locally strongly regular. The existence of graphs with these intersection arrays is unknown. We find possible orders and fixed-point subgraphs for the elements of the automorphism group of a distance-regular graph with intersection array {205, 136, 1; 1, 68, 205}. It is proved that a vertex-transitive distance-regular graph with this intersection array is a Cayley graph.

Keywords: distance-regular graph, automorphism

The paper was received by the Editorial Office on May 21, 2018.

Alena Mukhamedovna Kagazezheva, Cand. Sci. (Phys.-Math.), Kabardino-Balkarian State University named after H. M. Berbekov, Nal’chik, 360004 Russia, e-mail: fkagazezhev@mail.ru 

REFERENCES

1.   Kardanova M.L., Makhnev A.A. On graphs in which the neighborhood of each vertex is the complementary graph of a Seidel graph. Dokl. Math., 2010, vol. 82, no. 2, pp. 762–764. doi: 10.1134/S1064562410050212 .

2.   Belousov I.N., Makhnev A.A., Nirova M.S. Distance-regular extensions of strongly regular graphs with eigenvalue 2 Dokl. Math., 2012, vol. 86, no. 3, pp. 816–819. doi: 10.1134/S1064562412060257 .

3.   Gavrilyuk A. L., Guo Wenbin, Makhnev A.A. Automorphisms of Terwilliger graphs with μ = 2. Algebra and Logic, 2008, vol. 47, iss. 5, pp. 330–339. doi: 10.1007/s10469-008-9024-y .

4.   Makhnev A.A., Paduchikh D.V. On automorphisms of a distance-regular graph with intersection array {81,60,1;1,20,81}. Dokl. Math., 2010, vol. 82, no. 3, pp. 905–908. doi: 10.1134/S1064562410060177 .

5.   Makhnev A.A., Paduchikh D.V. Distance regular graphs in which local subgraphs are strongly regular graphs with the second eigenvalue at most 3. Dokl. Math., 2015, vol. 92, no. 2, pp. 568–571. doi: 10.1134/S1064562415050191 .

6.   Makhnev A.A., Shermetova M. Kh. On automorphisms of a distance-regular graph with intersection array {96,76,1;1,19,96}. Sib. Eektron. Mat. Izv., 2018, vol. 15, pp. 167–174. doi: 10.17377/semi.2018.15.016 .

7.   Makhnev A.A., Samoilenko M.S. On distance-regular covers of cliques with strongly regular neighborhoods of vertices. Modern problems of mathematics and its applications: Proc. 46th Int. Youth School-Conf., Ekaterinburg, 2015, pp. 13–18 (in Russian).

8.   Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin: Springer-Verlag, 1989, 495 p. doi: 10.1007/978-3-642-74341-2 .

9.   Cameron P. Permutation groups. Cambridge: Cambridge Univ. Press, 1999, 220 p. ISBN: 0-521-65302-9 .

10.   Makhnev A.A., Paduchikh D.V. An automorphism group of a distance-regular graph with intersection array {24,21,3;1,3,18}. Algebra Logic, 2012, vol. 51, no. 4, pp. 319-332. doi: 10.1007/s10469-012-9194-5 .

11.   Godsil C.D., Henzel A.D. Distance-regular covers of the complete graphs. J. Comb. Theory, Ser. B, 1992, vol. 56, iss. 2, pp. 205–238. doi: 10.1016/0095-8956(92)90019-T .

12.   Gavrilyuk A.L., Makhnev, A.A. On automorphisms of distance-regular graphs with intersection array {56,45,1;1,9,56}. Dokl. Math., 2010, vol. 81, no. 3, pp. 439–442. doi: 10.1134/S1064562410030282 .

13.   Zavarnitsine A.V. Finite simple groups with narrow prime spectrum. Sibirean Electr. Math. Reports, 2009, vol. 6, pp. 1–12.