An extremal (variational) problem on the minimum of a certain residual functional is considered. The extremal problem is related to the inverse problem of finding the thermal diffusivity coefficient in the stationary diffusion–advection–reaction model. The residual functional is the difference in some metric between the simulated and observed state of the model. Various aspects of the variational problem are studied. It is shown that the set of minimum points in a variational problem may turn out to be empty. Some conditions for the solvability of the variational problem are also given when the set of minimum points is nonempty. Some conditions for the uniqueness of a minimizing element are indicated. The concepts of weak and strong correctness of an extremal problem are formulated. Examples of problems are given in which both weak and strong correctness is absent, or there is weak correctness but no strong correctness. Some conditions of strong correctness for extreme problem are specified. A necessary minimum condition is formulated in the form of the integral and local maximum principle.
Keywords: diffusion–advection–reaction equation, thermal diffusivity coefficient, inverse problem, residual functional, extremal problem, variational method, minimum point
Received August 1, 2024
Revised September 24, 2024
Accepted October 28, 2024
Alexander Illarionovich Korotkii, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: korotkii@imm.uran.ru
Igor Anatolievich Tsepelev, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: tsepelev@imm.uran.ru
REFERENCES
1. Tikhonov A.N., Arsenin V.Ya. Methods for solutions of ill-posed problems. Transl. from the 2nd Russian ed., NY, Wiley, 1977, 258 p. ISBN: 0470991240. Original Russian text published in Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach, Moscow, Nauka Publ., 1979, 285 p.
2. Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications. In: Inverse and ill-posed problems series, vol. 36. Utrecht etc., VSP, 2002, 281 p. doi: 10.1515/9783110944822. Original Russian text published in Ivanov V. K., Vasin V. V., Tanana V. P. Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Moscow, Nauka Publ., 1978, 206 p.
3. Kabanikhin S.I. Inverse and ill-posed problems, Berlin, Boston, De Gruyter, 2011, 475 p. doi: 10.1515/9783110224016. Original Russian text published in Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Novosibirsk, Sibirskoe Nauchnoe Izd., 2009, 458 p. ISBN: 5-98365-003-3.
4. Samarskii A.A., Vabishchevich P.N. Numerical methods for solving inverse problems of mathematical physics. Berlin, Walter de Gruyter, 2007, 438 p. doi: 10.1515/9783110205794. Original Russian text published in Samarskii A. A., Vabishchevich P. N. Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Moscow, URSS Publ., 2004, 478 p. ISBN: 5-354-00156-0.
5. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford, Clarendon Press, 1961, 652 p.
6. Landau L.D., Lifshitz E.M. Fluid mechanics. Oxford, Pergamon Press, 1987, 539 p. ISBN: 9781483161044. Original Russian text published in Landau L. D., Lifshits E. M. Gidrodinamika, Moscow, Nauka Publ., 1986, 736 p.
7. A. I. Korotkii, Yu. V. Starodubtseva. Reconstruction of the absorption coefficient in a model of stationary reaction–convection–diffusion. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 166–181 (in Russian). doi: 10.21538/0134-4889-2024-30-3-166-181
8. Ladyzhenskaya O.A. The mathematical theory of viscous incompressible flow. NY, Gordon and Breach, 1987, 224 p. ISBN: 0677207603. Original Russian text published in Ladyzhenskaya O. A. Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Moscow, Nauka Publ., 1970, 288 p.
9. Ladyzhenskaya O.A., Ural’tseva N.N. Linear and quasilinear elliptic equations. NY, London, Academic Press, 1968, 495 p.
10. Ladyzhenskaya O.A. The boundary value problems of mathematical physics. Berlin, Heidelberg, NY, Springer-Verlag, 1985, 322 p. doi: 10.1007/978-1-4757-4317-3
11. Mikhailov V.P. Differentsial’nye uravneniya v chastnykh proizvodnykh [Partial differential equations]. Moscow, Nauka Publ., 1976, 392 p.
12. Adams R.A. Sobolev spaces. NY, Academic Press, 1975, 268 p.
13. Goebel M. On existence of optimal control. Mathematische Nachrichten, 1979, no. 93, pp. 67–73.
14. Vasil’ev F.P. Metody optimizatsii [Optimization methods]. Moscow, Faktorial Press, 2002, 824 p. ISBN: 5-88688-056-9.
15. Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional’nogo analiza [Elements of function theory and functional analysis]. Moscow, Nauka Publ., 1972, 496 p.
Cite this article as: Korotkii A.I., Tsepelev I.A. On the correctness of one extreme problem, related to inverse coefficient problems. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 4, pp. 170–179 .