V.P. Maksimov. On the error of calculating the attainable values of objective functionals for control systems with continuous and discrete times ... P.207-216

For a wide class of linear systems with aftereffect, the problem of attaining target values by a given system is considered under polyhedral constraints on the control. The aim of the control is set by a finite system of linear functionals $\ell_i$, $i=1,\ldots,N$; this is why the more precise term "$\ell$-attainability" is used in the paper. The general form of the functionals makes it possible to consider terminal, multipoint, and integral target conditions and their linear combinations as special cases. For the class of systems under consideration, the problem of $\ell$-attainability is reduced to a variant of the moment problem. One of the features of this problem is the account of random disturbances in elements of the moment matrix. These disturbances result in the distortion of the lower and upper (by inclusion) approximations of the $\ell$-attainable set. To obtain a guaranteed result, special procedures are proposed, which allow one to build open-loop controls with the following properties. First, the implementation of such controls produces trajectories on which the objective functionals take attainable values. Second, the calculation of attainable values is accompanied by guaranteed estimates of the errors associated with disturbances of elements of the moment matrix. In this case, each coordinate of the vector of target values corresponds not only to an interval of feasible values but also to the corresponding probability density of their distribution. The latter property allows one to give probabilistic characteristics to the errors.

Keywords: control problems, continuous--discrete systems with aftereffect, control with constraints, attainable sets

Received April 11, 2024

Revised May 1, 2024

Accepted May 6, 2024

Funding Agency: The work was supported by the Russian Science Foundation (project no. 22-21-00517), https://rscf.ru/project/22-21-00517/.

Vladimir Petrovich Maksimov, Dr. Phys.-Math. Sci., Prof., Perm State University, Perm, 614068 Russia, e-mail: maksimov@econ.psu.ru

REFERENCES

1.   Krasovskii N.N. Teoriya upravleniya dvizheniem [Motion control theory]. Moscow, Nauka Publ., 1968, 476 pp.

2.   Althoff M., Freshe G., Girard A. Set propagation techniques for reachability analysis. Ann. Rev. Contr., Robot., Autonom. Syst., 2021, vol. 4, pp. 369–395. doi: 10.1146/annurev-control-071420-081941

3.   Kostousova E.K. On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints. Proc. Steklov Inst. Math. (Suppl. 1), 2021, vol 313, suppl. 1, pp. S140–S154. doi: 10.1134/S0081543821030159

4.   Sartipizadeh H., Vinod A.P., Açıkmeşe B., Oishi M. Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems. In: Proc. 2019 American Control Conf. (ACC), IEEE, 2019, pp. 37–44. doi: 10.23919/ACC.2019.8814354

5.   Allen R.E., Clark A.A., Starek J.A., Pavone M. A machine learning approach for real-time reachability analysis. In: 2014 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, IEEE, 2014, pp. 2202–2208. doi: 10.1109/IROS.2014.6942859

6.   Zimovets A.A., Matviichuk A.R. A parallel algorithm for constructing approximate attainable sets of nonlinear control systems. Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 2015, vol. 25, no. 4, pp. 459–472 (in Russian).

7.   Zimovets A.A., Matviichuk A.R. A grid-based algorithm for constructing attainability sets with improved boundary approximation. Chelyab. Phys. Math. J., 2021, vol. 6, iss. 1, pp. 9–21 (in Russian). doi: 10.47475/2500-0101-2021-16101

8.   Lew T., Pavone  M. Sampling-based reachability analysis: a random set theory approach with adversarial sampling. In: Proc. 4th Conf. on Robot Learning CoRL 2020, (eds.) Jens Kober, Fabio Ramos, Claire Tomlin, Proc. of Machine Learning Research, Cambridge MA, USA, 2021, vol. 155, pp. 2055–2070.

9.   Zykov I.V. Approximate calculation of reachable sets for linear control systems with different control constraints. Izv. In-ta Mat. Inf. Udmurt. Gos. Un-ta, 2022, vol. 60, pp. 16–33 (in Russian). doi: 10.35634/2226-3594-2022-60-02

10.   Ushakov V.N., Ershov A.A. Reachable sets and integral funnels of differential inclusions depending on a parameter. Dokl. Math., 2021, vol. 104, no. 1, pp. 200–204. doi: 10.1134/S1064562421040153

11.   Meyer P-J., Devonport A., Arcak  M. TIRA: toolbox for interval reachability analysis. In: Proc. of the 22nd ACM Inter. Conf. Hybrid Syst.: Comput. Control., 2019, pp. 224–229. doi: 10.1145/3302504.3311808

12.   Immler F., Althoff M., Benet L., et al. ARCH-COMP19 category report: Continuous and hybrid systems with nonlinear dynamics. In: EPiC Ser. Comput. 6th Inter. Workshop Appl. Verific. Contin. Hybrid Systems, 2019, vol. 61, pp. 41–61. doi: 10.29007/m75b

13.   Maksimov V.P. On the ℓ-attainability sets of continuous discrete functional differential systems. In: Proc. 17th IFAC Workshop on Control Appl. Optimiz. CAO, IFAC PapersOnLine, Yekaterinburg, Russia, 2018, vol. 51, iss. 32, pp. 310–313. doi: 10.1016/j.ifacol.2018.11.401

14.   Krein M.G., Nudel’man A.A. The Markov moment problem and extremal problems, Providence, R.I., Amer. Math. Soc., 1977, 417 p. ISBN: 978-0-8218-4500-4 . Original Russian text published in Krein M. G., Nudel’man A. A., Problemy momentov Markova i ekstremal’nye zadachi, Moscow, Nauka Publ., 1973, 552 p.

15.   Maksimov V.P. The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components. Vest. Udmurt. Un-ta. Matematika. Mekhanika. Komp’yuternye Nauki, 2019, vol. 29, no. 1, pp. 40–51. doi: 10.20537/vm190104

16.   Maksimov V.P. Continuous-discrete dynamic models. Ufa Math. J., 2021, vol. 13, no. 3, pp. 95–103. doi:10.13108/2021-13-3-95

17.   Maksimov V. P. . On internal estimates of reachable sets for continuous–discrete systems with discrete memory. Tr. Inst. Mat. Mekh. UrO RAN, 2021, vol. 27, no. 3, pp. 141–151 (in Russian). doi: 10.21538/0134-4889-2021-27-3-141-151

18.   Voevodin V.V. Vychislitel’nyye osnovy lineynoy algebry [Computational foundations of linear algebra], Moscow, Nauka Publ., 1977, 304 p.

19.   Maksimov V.P. To probabilistic description of an ensemble of trajectories to a continuous-discrete control system with incomplete information. Vestn. Ross. Un-tov. Mathematika, 2023, vol. 28, no. 143, pp. 126–267. doi:10.20310/2686-9667-2023-28-143-256-267

Cite this article as: V.P. Maksimov. On the error of calculating the reachable values of objective functionals for control systems with continuous and discrete times. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 207–216.