Questions related to the extension of reachability problems and aimed at the construction of attraction sets, which are asymptotic analogs of reachable sets in the situation of successive relaxation of the constraint system, are studied. Finitely additive measures with the property of weak absolute continuity with respect to a fixed measure are used as generalized elements; the measure (in the case of control problems) is usually defined as the restriction of the Lebesgue measure to some family of measurable sets. The properties of relaxed reachability problems and the connection of their extensions with attraction sets in the class of usual solutions (controls), as well as the properties of these sets that have the sense of stability when the constraints are relaxed and asymptotic insensitivity when some "part"' of the constraints is relaxed, are studied.
Keywords: finitely additive measure, attraction set, weak absolute continuity
Received April 19, 2024
Revised May 15, 2024
Accepted May 20, 2024
Aleksandr Georgievich Chentsov, Dr. Phys.-Math. Sci., Prof., Corresponding Member RAS, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University Yekaterinburg, 620000 Russia, e-mail: chentsov@imm.uran.ru
REFERENCES
1. Warga J. Optimal control of differential and functional equations. NY, Academic Press, 1972, 531 p. doi: 10.1016/C2013-0-11669-8 . Translated to Russian under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami, Moscow, Nauka Publ., 1977, 620 p.
2. Gamkrelidze R.V. Principles of optimal control theory. NY, Springer, 1978, 175 p. doi: 10.1007/978-1-4684-7398-8 . Original Russian text was published in Gamkrelidze R. V., Osnovy optimal’nogo upravleniya, Tbilisi, Tbilisi Univ. Publ., 1975, 230 p.
3. Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . This book is substantially revised version of the monograph: Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.
4. Krasovskii N.N. Teoriya upravleniya dvizheniem [Motion control theory]. Moscow, Nauka Publ., 1968, 476 p.
5. Halanau A., Wexler D. Teoria calitativa a sistemelor cu impulsuri. Bucuresti, Acad. Rep. Soc. Romina, 1968, 313 p. Translated to Russian under the title Kachestvennaya teoriya impul’snykh sistem, Moscow, Mir Publ., 1971. 309 p.
6. Zavalishchin S.T., Sesekin A.N. Impul’snyye protsessy. Modeli i prilozheniya [Impulse processes. Models and applications]. Moscow, Nauka Publ., 1991, 256 p.
7. Dykhta V.A., Samsonyuk O.N. Optimal’noye impul’snoye upravleniye s prilozheniyami [Optimal impulse control with applications]. Fizmatlit Publ., 2003, 256 p. ISBN: 5-9221-0352-0 .
8. Miller B.M., Rubinovich E.Ya. Optimizatsiya dinamicheskikh sistem s impul’snymi upravleniyami [Optimization of dynamic systems with impulse controls]. Moscow, Nauka Publ., 2005, 429 p. ISBN: 5-02-033458-8 .
9. Chentsov A.G. Konechno-additivnyye mery i rasshireniya abstraktnykh zadach upravleniya [Finite-additive measures and extensions of abstract control problems]. Tbilisi, Acad. Sci. Georgia. In-te of Cybernetics Publ., 2004. Ser. Modern Math. and Its Appl., vol. 17, Optimal control.
10. Chentsov A.G. Asymptotic attainability. Dordrecht, Boston, London, Kluwer Academic Publ., 1997, 322 p. doi: 10.1007/978-94-017-0805-0
11. Chentsov A.G., Morina S.I. Extensions and relaxations. Dordrecht, Kluwer Academic Publ., 2002, 408 p. doi: 10.1007/978-94-017-1527-0
12. Bhaskara Rao K.P.S., Bhaskara Rao M. Theory of charges. A study of finitely additive measures. NY, Acad. Press, 1983, 315 p.
13. Kuratowski K., Mostowski A. Set theory. Warszawa, PWN Polish Scient. Publ., 1967. Translated to Russian under the title Teoriya mnozhestv, Moscow, Mir Publ., 1970, 416 p.
14. Bulinskii A.V., Shiryaev A.N. Teoriya sluchainykh protsessov [The theory of stochastic processes]. Moscow, Fizmatlit Publ., 2005, 402 p. ISBN: 978-5-9221-0335-0 .
15. Kelley J.L. General topology. Springer Science & Business Media, 1975, 298 p.
16. Chentsov A.G. Elementy konechno-additivnoi teorii mery, I [Elements of finitely additive measure theory, I]. Yekaterinburg, Ural State Tech. Univ., 2008, 388 p. ISBN: 978-5-321-01408-0 .
17. Chentsov A.G. Extensions of abstract problems of attainability: nonsequential version. Proc. Steklov Inst. Math. (Suppl.), 2007, vol. 259, suppl. 2, pp. S46–S82. doi: 10.1134/S0081543807060041
18. Dunfrod N., Schwartz J. Linear operators: General theory, NY, London, Intersci. Publ., 1958. ISBN: 9780470226056. Translated to Russian under the title Lineinye operatory: Obshchaya teoriya, Moscow, Inostr. Liter. Publ., 1962, 895 p.
19. Engelking R. General topology, Warsaw, PWN, 1977. Translated to Russian under the title Obshchaya topologiya, Moscow, Mir Publ., 1986, 751 p.
20. Chentsov A.G. Elementy konechno-additivnoi teorii mery, II [Elements of finitely additive measure theory, II]. Yekaterinburg, Ural State Tech. Univ., 2010. ISBN: 978-5-321-01684-8 .
21. Chentsov A.G. Prilozheniya teorii mery k zadacham upravleniya [Applications of measure theory to control problems]. Sverdlovsk, Sredne-Ural’skoye Knizhnoye Izd-vo, 1985, 126 p.
22. Subbotin A.I., Chentsov A.G. Optimizatsiya garantii v zadachakh upravleniy [Guarantee optimization in control problems]. Moscow, Nauka Publ., 1981, 288 p.
Cite this article as: A.G. Chentsov. Some questions related to the extension of reachability problems in the class of finitely additive measures. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 293–313.