V.N. Ushakov, A.A. Ershov. On the construction of solutions to a game problem with a fixed end time ... P.255-273

We study the game problem of convergence of a conflict-control system with a compact set in a finite-dimensional Euclidean space at a fixed time. The schemes for constructing solutions of the problem are based on the methods of the theory of positional differential games designed by N.N. Krasovskii and A.I. Subbotin in the second half of the 20th century. In general, the problem does not assume that the saddle point condition in the small game is satisfied, and therefore the problem is considered in the minimax formulation. New schemes for the approximate calculation of minimax $u$-stable paths and bridges are described and justified for a wide class of conflict-control systems. The obtained results constitute a stage of the approximate calculation of solutions to the game problem, which is associated with the discretization of the time interval on which the game takes place.

Keywords: control system, $u$-stable bridge, $u$-stable path, solvability set, game problem of convergence

Received May 26, 2024

Revised July 17, 2024

Accepted July 22, 2024

Funding Agency: The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2024-1377).

Vladimir Nikolaevich Ushakov, Corresponding member of RAS, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: ushak@imm.uran.ru

Aleksandr Anatol’evich Ershov, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: ale10919@yandex.ru

REFERENCES

1.   Krasovskii N.N. Igrovye zadachi o vstreche dvizhenii [Game problems on the encounter of motions]. Moscow, Nauka Publ., 1970, 420 p.

2.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text was published in Krasovskii N. N., Subbotin A. I. Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.

3.   Subbotin A.I., Chentsov A.G. Optimizatsiya garantii v zadachakh upravleniy [Guarantee optimization in control problems]. Moscow, Nauka Publ., 1981, 288 p.

4.   Osipov Yu.S. Minimax absorption in difference-differential games. Sov. Math., Dokl., 1972, vol. 13, pp. 337–341.

5.   Krasovskij N.N., Subbotin A.I., Ushakov V.N. A minimax differential game. Sov. Math., Dokl., 1972, vol. 13, pp. 1200–1204.

6.   Kurjanskii A.B. Izbrannye trudy [Selected works]. Moscow, Publ. House of Moscow Univ., 2009, 756 p. ISBN: 978-5-211-05758-6 .

7.   Subbotin A.I., Subbotina N.N. Necessary and sufficient conditions for a piecewise smooth value of a differential game. Sov. Math., Dokl., 1978. vol. 19, pp. 1447–1451.

8.   Ushakov V.N. K teorii minimaksnyh differentsial’nyh igr. Chast’ 1 [On the theory of minimax differential games. Part 1]. Yekaterinburg, Deposited at VINITI on 10.16.1980, № 4425-80.

9.   Gomoyunov M.I., Lukoyanov N.Yu. On the numerical solution of differential games for neutral-type linear systems. Proc. Steklov Inst. Math., 2018, vol. 301, suppl. 1, pp. S44–S56. doi: 10.1134/S0081543818050048

10.   Ushakov V.N. On the problem of constructing stable bridges in a differential game of approach and avoidance. Engineer. Cybernetcs, 1980, vol. 18, no. 4, pp. 16–23.

11.   Taras’yev A.M., Ushakov V.N., Khripunov A.P. On a computational algorithm for solving game control problems. J. Appl. Math. Mech., 1987, vol. 51, iss. 2, pp. 167–172. doi: 10.1016/0021-8928(87)90059-1

12.   Taras’yev A.M. Konstruktsii i metody analiza v zadachah optimal’nogo garantirovannogo upravleniya [Constructions and methods of nonsmooth analysis in problems of optimal guaranteed control]. Abstract of the thesis of dissertation, Cand. Sci. (Phys.–Math.): 01.01.02, Yekaterinburg, Institute of Mathematics and Mechanics, 1996, 32 p.

13.   Grigor’eva S.V., Pakhotinskikh V.Yu., Uspenskii A.A., Ushakov V.N. Construction of solutions in certain differential games with phase constraints. Sb. Math., 2005, vol. 196, no. 4, pp. 513–539. doi: 10.1070/SM2005v196n04ABEH000890

14.   Krasovskij N.N. On the problem of unifying differential games. Sov. Math., Dokl., 1976, vol. 17, pp. 269–273.

15.   Krasovskii N.N. Unification of differential games. Trudy Inst. Math. Mekh. UrO RAN, 1977, no. 24, pp. 32–45.

16.   Subbotin A.I. Minimaksmye neravenstva i uravneniya Gamil’tona-Yakobi [Minimax inequalities and Hamilton — Jacobi equations]. Moscow, Nauka Publ., 1991, 216 p. ISBN: 5-02-000139-2 .

17.   Subbotin A.I. Obobshchennyye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka [Generalized solutions of partial differential equations of the first order]. Moscow–Izhevsk, Institute for Computer Research, 2003, 336 p. ISBN: 5-93972-206-7 .

18.   Fleming W.H. The convergence problem for differential games. J. Math. Anal. Appl., 1961, vol. 3, pp. 102–116. URL: https://core.ac.uk/download/pdf/81988858.pdf

19.   Pontryagin L. Linear differential games. I. Sov. Math., Dokl., 1967, vol. 8, pp. 769–771.

20.   Pontryagin L.S. Linear differential games. II. Sov. Math., Dokl., 1967, vol. 8, pp. 910–912.

21.   Nikol’skii M.S. On the alternating integral of Pontryagin. Math. USSR-Sb., 1983, vol. 44, iss. 1, pp. 125–132. doi: 10.1070/SM1983v044n01ABEH000956

22.   Nikol’skii M.S. On the lower alternating integral of Pontryagin in linear differential games of pursuit. Math. USSR-Sb., 1987, vol. 56, iss. 1, pp. 33—47. doi: 10.1070/SM1987v056n01ABEH003022

23.   Polovinkin E.S., Ivanov G.E., Balashov M.V., Konstantinov R.V., Khorev A.V. An algorithm for the numerical solution of linear differential games. Sb. Math., 2001, vol. 192, no. 10, pp. 1515–1542. doi: 10.1070/SM2001v192n10ABEH000604

24.   Azamov A. Semistability and duality in the theory of the Pontryagin alternating integral. Dokl. Math., 1988, vol. 37, no. 2, p. 355–359.

25.   Pshenichnyj B.N. The structure of differential games. Sov. Math., Dokl., 1969, vol. 10, pp. 70–72.

26.   Chernous’ko F.L., Melikyan A.A. Igrovye zadachi upravleniya i poiska [Game problems of control and search], Moscow, Nauka Publ., 1978, 270 p.

27.    Patsko V.S. Quality problem in second order linear differential games. Differentsial’nyye igry i zadachi upravleniya. Sb. statei ed. by Kurzhanskii A.B., Sverdlovsk: Ural Scientific Center of the USSR Academy of Sciences, 1975, pp. 167–227 (in Russian). http://sector3.imm.uran.ru/stat/patsko1975sbDifIgr/ Patsko1975sbDifIgrV...

28.   Cardaliaguet P., Quincampoix M., Saint-Pierre P. Pursuit differential games with state constraints. SIAM J. Control Optim., 2000, vol. 39, no. 5, pp. 1615–1632. doi: 10.1137/S0363012998349327

29.   Bardi M., Falcone M., Soravia P. Numerical methods for pursuit-evasion games via viscosity solutions. Stochastic and differential games, Annals of the Inter. Society of Dynamic Games, 1999, vol. 4, pp. 105–175. doi: 10.1007/978-1-4612-1592-9_3

Cite this article as: V.N. Ushakov, A.A. Ershov. On the construction of solutions to a game problem with a fixed end time. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 255–273.