The problem of tracking an unknown nonsmooth in time distributed disturbance of a parabolic inclusion describing the two-phase Stefan problem is studied. The problem is reduced to the problem of open-loop control of some appropriately chosen auxiliary system. The control in this system tracks the unknown disturbance in the mean square, and its construction is based on the results of inaccurate measurements of solutions to the given inclusion and to the auxiliary system. Two algorithms for solving the problem that are stable to noise and calculation errors are presented. The algorithms are based on an appropriate modification of Krasovskii’s principle of extremal shift known in the theory of guaranteed control.
Keywords: disturbance tracking, parabolic inclusion
Received May 27, 2024
Revised June 7, 2024
Accepted June 10, 2024
Vyacheslav Ivanovich Maksimov, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: maksimov@imm.uran.ru
Yury Sergeyevich Osipov, RAS Academician, Dr. Phys.-Math. Sci., Prof., Steklov Mathematical Institute of RAS; Lomonosov Moscow State University, Moscow 119991, Russia, e-mail: yriyosipov@hotmail.com
REFERENCES
1. Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text was published in Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.
2. Krasovskiy N.N. Upravleniye dinamicheskoy sistemoy. Zadacha o minimume garantirovannogo rezul’tata [Dynamic system control. Minimum guaranteed result problem]. Moscow, Nauka Publ., 1985, 520 p.
3. Polyak B.T., Shcherbakov P.S. Robastnaya ustoychivost’ i upravleniye [Robust stability and control]. Moscow, Nauka Publ., 2002, 303 p. ISBN: 5-02-002561-5 .
4. Chen W.H., Yang J., Guo L., Li H. Disturbance-observer-basedcontrol and related methods: an overview. IEEE Trans. Ind. Electron., 2015, vol. 63, iss. 2, pp. 1083–1095. doi: 10.1109/TIE.2015.2478397
5. Yuan Y., Wang Z., Yu V., Guo L., Yang H. Active disturbance rejection control for a pneumatic motion platform subject to actuator saturation: An extended state observer approach. Automatica, 2019, vol. 107, pp. 353–361. doi: 10.1016/j.automatica.2019.05.056
6. Hätönen J., Owens D.H., Feng K. Basis functions and parameter optimization in high-order iterative learning control. Automatica, 2006, vol. 42, iss. 2, pp. 287–294. doi: 10.1016/j.automatica.2005.05.025
7. Yu M., Chai S. Adaptive iterative learning control for discrete-time nonlinear systems with multiply iteration-varying high-order internal models. Int. J. Robust Nonlinear Control, 2021, vol. 31, no. 15, pp. 7390–7408. doi: 10.1002/rnc.5690
8. Tikhonov A.N., Arsenin V.Ya. Methods for solutions of ill-posed problems. Transl. from the 2nd Russian ed., New York, Wiley, 1977, 258 p. ISBN: 0470991240 . Original Russian text published in Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach, Moscow, Nauka Publ., 1979, 285 p.
9. Lavrent’ev M.M., Romanov V.G., Shishatskii S.P. Ill-posed problems of mathematical physics and analysis. Provodence, Amer. Math. Soc., 1986, 290 p. ISBN: 978-1-4704-4478-5 . Original Russian text published in Lavrent’ev M. M., Romanov V. G., Shishatskii S. P. Nekorrektnye zadachi matematicheskoi fiziki i analiza, Moscow, Nauka Publ., 1980, 286 p.
10. Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications. In: Inverse and ill-posed problems series, vol. 36. Utrecht etc., VSP, 2002, 281 p. doi: 10.1515/9783110944822 . Original Russian text published in Ivanov V. K., Vasin V. V., Tanana V. P. Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya. Moscow, Nauka Publ., 1978, 206 p.
11. Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions. London, Gordon and Breach, 1995, 625 p. ISBN: 978-2881249440 .
12. Osipov Yu.S., Vasil’ev F.P., Potapov M.M. Osnovy metoda dinamicheskoi regulyarizatsii [Foundations of method of dynamic regularization]. Moscow, Moscow State Univ., 1999, 237 p. ISBN: 5-211-04085-6 .
13. Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. Dynamic inverse problems for parabolic systems. Differ. Equ., 2000, vol. 36, iss. 5, pp. 643–661. doi: 10.1007/BF02754222
14. Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem [Methods for dynamic reconstruction of inputs of control systems]. Yekaterinburg, Ural Branch of RAS Publ., 2011, 292 p.
15. Osipov Yu.S., Pandolfi L., Maksimov V.I. Problems of dynamic reconstruction and robust boundary control: the case od Dirichlet boundary conditions. J. Inverse and Ill-Posed Problems, 2001, vol. 9, no. 2, pp. 149–162. doi: 10.1515/jiip.2001.9.2.149
16. Osipov Yu.S., Maksimov V.I. On dynamical input reconstruction in a distributed second order equation. J. Inverse and Ill-Posed Problems, 2021, vol. 29, no. 5, pp. 707–719. doi: 10.1515/jiip-2021-0004
17. Brezis H. Probl’emes unilat‘eraux. J. Math. Pures Appl., 1972, vol. 51, pp. 1–168.
18. Barbu V. Optimal control of variational inequalities. Pitman Advanced Pub. Program, 1984, 298 p. ISBN: 0273086294 .
19. Tiba D. Optimal control of nonsmooth distributed parameter systems. Berlin, Springer-Verlag, 1990, 160 p. doi: 10.1007/BFb0085564
20. Neittaanmaki N., Tiba D. Optimal control of nonlinear parabolic systems. Theory, algorithms and applications. Marcel Dekker Pub., 1994, 424 p. ISBN: 0824790812 .
Cite this article as: V.I. Maksimov, Yu.S. Osipov. Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 191–206.