The problem of controllability of linear systems of variable structure using a dynamic controller is considered. The notion of complete controllability of such systems using a dynamic controller is formulated. Conditions for the complete controllability of composite and stage-by-stage changing linear nonstationary systems using a dynamic controller are obtained. It is shown that a stage-by-stage changing linear stationary system is completely controllable using a dynamic controller if and only if the system is completely controllable and completely observable. The criterion of complete controllability is explicitly expressed in terms of the controllability and observability matrices of a stage-by-stage changing linear stationary system and is comparable with the known condition for a conventional system.
Keywords: system of variable structure, composite system, stage-by-stage changing system, controllability, observability, dynamic controller
Received April 4, 2024
Revised May 15, 2024
Accepted May 20, 2024
Vanya R. Barseghyan, Dr. Phys.-Math. Sci., Prof., Institute of Mechanics of National Academy of Sciences of RA; Yerevan State University, Yerevan, Armenia, e-mail: barseghyan@sci.am
REFERENCES
1. Kalman R. On the general theory of control systems. In: Proc. First IFAC Congress, Moscow, Izd. AN SSSR, 1961, vol. 2, pp. 521–547 (in Russian).
2. Krasovskii N.N. Teoriya upravleniya dvizheniyem [Motion control theory]. Moscow, Nauka Publ., 1968, 474 p.
3. Ignatenko V.V., Krakhotko V.V., Razmyslovich G.P. On the controllability of linear systems by descriptor regulators. Proc. BSTU, 2017, ser. 3, vol. 1, pp. 5–7 (in Russian).
4. Razmyslovich G.P., Krakhotko V.V. Controllability linear systems with many delays in control by the differential regulators. Zhurn. Belorusskogo Gos. Un-ta. Matematika. Informatika, 2018, vol. 3, pp. 82–85 (in Russian).
5. Ignatenko V.V. Controllability of dynamic systems using a regulator. Vestnik BGU, 1976, ser. 1, pp. 56–58 (in Russian).
6. Gabrielyan M.S. Program constructions for game problems with m target sets and changing systems. Uchenyye Zapiski YEGU. Fizika i Matematika, 1985, vol. 3, pp. 22–32 (in Russian).
7. Gabrielyan M.S., Barseghyan V.R. Stochastic software synthesis for step-by-step linear systems. Uchenyye Zapiski YEGU. Fizika i Matematika, 1994, vol. 2, pp. 29–39 (in Russian).
8. Gabrielyan M.S., Chilingaryan A.S. Control with a guide in the game problem of approaching m target sets for systems with variable dynamics. Uchenyye Zapiski YEGU. Fizika i Matematika, 2008, vol. 1, pp. 40–46 (in Russian).
9. Emel’yanov S.V., Utkin V.I. Teoriya sistem s peremennoy strukturoy [Theory of systems with variable structure]. Moscow, Nauka Publ., 1970, 592 p.
10. Emelyanov S.V., Korovin S.K. Novyye tipy obratnoy svyazi. Upravleniye pri neopredelennosti [New types of feedback. Management under uncertainty]. Moscow, Nauka Publ., 1997, 352 p. ISBN: 5-02-015149-1 .
11. Barseghyan V.R. Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami [Control of compound dynamic systems and of systems with multipoint intermediate conditions], Moscow, Nauka Publ., 2016, 230 p. ISBN: 978-5-02-039961-7 .
12. Barseghyan V.R. On the controllability and observability of linear dynamic systems with variable structure. In: Proc. of 2016 Int. Conf. “Stability and oscillations of nonlinear control systems” (Pyatnitskiy’s Conference), STAB 2016, Moscow, Russia, 2016, pp. 1–3. doi: 10.1109/STAB.2016.7541163
13. Barseghyan V.R., Barseghyan T.V. On an approach to the problems of control of dynamic system with nonseparated multipoint intermediate conditions. Automation and Remote Control, 2015, vol. 76, no. 4, pp. 549–559. doi: 10.1134/S0005117915040013
14. Barseghyan V.R., Simonyan T.A., Barseghyan T.V. On the problem of optimal stabilization of a system of linear loaded differential equations. Izv. Irkutskogo Gos. Un-ta. Matematika, 2019, vol. 27, pp. 71–79 (in Russian). doi: 10.26516/1997-7670.2019.27.71
15. Barseghyan V., Solodusha S. On the optimal control problem for vibrations of the rod/string consisting of two non-homogeneous sections with the condition at an intermediate time. Mathematics, 2022, vol. 10, no. 23, pp. 4444. doi: 10.3390/math10234444
16. Barseghyan V., Solodusha S. A model of the control problem of the thermal effect of a laser beam on a two-layer biomaterial. Mathematics, 2024, vol. 12, no. 3, pp. 374. doi: 10.3390/math12030374
17. Zabello L.E. On the controllability of linear non-stationary systems. Avtomatika i Telemekhanika, 1973, vol. 8, pp. 13–19 (in Russian).
18. Johansson M. Piecewise Linear Control Systems, Berlin, Heidelberg: Springer, 2003, 220 p. doi: 10.1007/3-540-36801-9
19. Hong Shi, Guangming Xie. Controllability and observability criteria for linear piecewise constant impulsive systems. J. Appl. Math., 2012, vol. 2012, art. no 182040. doi: 10.1155/2012/182040
20. Dengguo Xu. Controllability and observability of a class of piecewise linear impulsive control systems. Advances in Computer, Communication, Control and Automation, Ser. Lecture notes in electrical engineering, 2011, vol. 121, pp. 321–328. doi: 10.1007/978-3-642-25541-0_42
21. Gantmakher F.R. The theory of matrices, NY, Chelsea Publ. Comp., 2000, 374 p. Translated to Russian under the title Teoriya matrits. 5-e izd., Moscow, Phys. Math. Lit. Publ., 2004, 560 p.
22. Prasolov V.V. Zadachi i teoremy lineynoy algebry, 2-е izd. [Problems and theorems of linear algebra, 2nd ed.]. Moscow, Nauka Publ., 2008, 537 p.
Cite this article as: V.R. Barseghyan. Controllability of linear systems of variable structure using a dynamic controller. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 30–44.