E.N. Khailov. Bolza minimization problems for the Lotka–Volterra competition model ... P. 259-276

To study the relationship between the concentrations of healthy and cancer cells in blood cancers, the Lotka–Volterra competition mathematical model is used. Terms containing the control function that specifies the concentration of the drug or the intensity of the therapy that directly kills cancer cells are added to this model. Two types of restrictions imposed on such a control function are considered: lower and upper restrictions and only a lower restriction. The result is the control Lotka–Volterra competition model with two different sets of admissible controls. For such control models, the Bolza problem is to minimize the weighted difference in the concentrations of cancer and healthy cells both at the final time of a given treatment period and throughout this entire period. For the second set of admissible controls, the integral part of the objective function additionally contains a term reflecting the cost of the treatment being performed. The use of the Pontryagin maximum principle allows us to analytically study the features of optimal controls in the considered minimization problems. For the first set of admissible controls, cases are identified and studied in detail when the optimal control is a bang-bang function, as well as cases when, along with bang-bang portions, the control may contain singular regimens. The established results are confirmed by corresponding numerical calculations performed for various parameter values and initial values of the control Lotka–Volterra competition model.

Keywords: Lotka–Volterra competition model, nonlinear control system, Bolza minimization problem, Pontryagin maximum principle, switching function, bang-bang control, singular regimen, indicator function

Received March 29, 2024

Revised April 6, 2024

Accepted April 8, 2024

Funding Agency: This research was supported by the Ministry of Science and Higher Education of the Russian Federation within a program of the Moscow Center for Fundamental and Applied Mathematics (agreement no. 075-15-2022-284).

Evgenii Nikolaevich Khailov, Cand. Sci. (Phys.-Math.), Faculty of Computational Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992, Russia, e-mail: khailov@cs.msu.su

REFERENCES

1.   Khailov E.N., Grigorenko N.L., Grigorieva E.V., Klimenkova A.D. Upravlyayemyye sistemy Lotki-Vol’terry v modelirovanii mediko-biologicheskikh protsessov [Controlled Lotka–Volterra systems in the modeling of biomedical processes], Moscow, MAKS PRESS Publ., 2021, 204 p. (in Russian) doi: 10.29003/m2448.978-5-317-06681-9

2.   Lee E.B., Markus L. Foundations of optimal control theory, NY, London, Sydney: John Wiley & Sons, 1967, 576 p. ISBN: 0471522635 . Translated to Russian under the title Osnovy teorii optimal’nogo upravleniya, Moscow, Nauka Publ., 1972, 576 p.

3.   Vasil’ev F.P. Metody optimizatsii [Optimization methods]. Moscow, Faktorial Press, 2002, 824 p. ISBN: 5-88688-056-9 .

4.   Zelikin M.I., Borisov V.F. Theory of chattering control with applications to astronautics, robotics, economics, and engineering. Boston: Birkhäuser, 1994, 244 p. doi: 10.1007/978-1-4612-2702-1

5.   Schättler H., Ledzewicz U. Geometric optimal control: theory, methods and examples. NY; Heidelberg; Dordrecht; London, Springer Publ., 2012, 640 p. doi: 10.1007/978-1-4614-3834-2

6.   Gabasov R., Kirillova F.M. Osobyye optimal’nyye upravleniya [Special optimal controls], Moscow, Librocom Publ., 2013, 256 p. ISBN: 978-5-397-03699-3 .

7.   Schättler H., Ledzewicz U. Optimal control for mathematical models of cancer therapies: an application of geometric methods. NY; Heidelberg; Dordrecht; London, Springer Publ., 2015, 496 p. doi: 10.1007/978-1-4939-2972-6

8.   Martcheva M. An introduction to mathematical epidemiology. NY; Heidelberg; Dordrecht; London, Springer Publ., 2015, 453 p. doi: 10.1007/978-1-4899-7612-3

9.   Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional’nogo analiza [Elements of function theory and functional analysis]. Moscow, Nauka Publ., 1972, 496 p.

10.   Lusternik L.A., Sobolev V.J. Elementy funktsional’nogo analiza [Elements of functional analysis]. Moscow–Leningrad, Gostekhizdat Publ., 1951, 360 p.

11.   Yosida K. Functional Analysis. Berlin, Heidelberg, Springer-Verlag, 1967, 469 p. ISBN-10: 9783662236758 . Translated to Russian under the title Funktsional’nyy analiz, Moscow, Mir Publ., 1967, 624 p.

12.   Fleming W., Rishel R. Deterministic and stochastic optimal control. NY, Springer, 1975, 222 p. doi: 10.1007/978-1-4612-6380-7. Translated to Russian under the title Optimal’noye upravleniye determinirovannymi i stokhasticheskimi sistemami, Moscow, Mir Publ., 1978, 316 p.

13.   Cesari L. Optimization — theory and applications. Problems with ordinary differential equations. NY, Springer-Verlag, 1983, 542 p. 10.1007/978-1-4613-8165-5

14.   Jung E., Lenhart S., Feng Z. Optimal control of treatments in a two-strain tuberculosis model. Discr. Cont. Dynam. Syst., 2002, vol. 2, no. 4, pp. 473–482. doi: 10.3934/dcdsb.2002.2.473

15.   Silva C.J., Torres D.F.M. Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Math. Biosci., 2013, vol. 244, no. 2, pp. 154–164. doi: 10.1016/j.mbs.2013.05.005

16.   Mateus J.P., Rebelo P., Rosa S., Silva C.M., Torres D.F.M. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discr. Contin. Dynam. Syst., 2018, vol. 11, no. 6, pp. 1179–1199. doi: 10.3934/dcdss.2018067

17.   Bonnans F., Martinon P., Giorgi D., Grélard V., Maindrault S., Tissot O., Liu J. BOCOP 2.2.1 — user guide [e-resource]. August 8, 2019. URL http://bocop.org

18.   Khailov E.N., Grigorieva E.V., Klimenkova A.D. Optimal combination treatment protocols for a controlled model of blood cancer. Tr. Inst. Mat. Mekh. UrO RAN, 2022, vol. 28, no. 3, pp. 222–240 (in Russian). doi: 10.21538/0134-4889-2022-28-3-222-240

Cite this article as: E.N. Khailov. Bolza minimization problems for the Lotka–Volterra competition model. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 2, pp. 259–276.