E.S. Zhukovskiy, E.A. Panasenko. The method of comparison with a model equation in the study of inclusions in vector metric spaces ... P. 68-85

For a given multivalued mapping $F:X\rightrightarrows Y$ and a given element $\tilde{y}\in Y$, the existence of a solution $x\in X$ to the inclusion $F(x)\ni\tilde{y}$ and its estimates are studied. The sets $X$ and~$Y$ are endowed with vector metrics $\mathcal{P}_X^{E_+}$ and $\mathcal{P}_Y^{M_+}$, whose values belong to cones $E_+$ and $M_+$ of a Banach space $E$ and a linear topological space $M$, respectively. The inclusion is compared with a "model" equation $f(t)=0$, where $f:E_+\to M$. It is assumed that $f$ can be written as $f(t)\equiv g(t,t)$, where the mapping $g:{E}_+\times{E}_+\to M$ orderly covers the set $\{0\}\subset M$ with respect to the first argument and is antitone with respect to the second argument and $-g(0,0)\in M_+$. It is shown that in this case the equation $f(t)=0$ has a solution $t^*\in E_+$. Further, conditions on the connection between $f(0)$ and $F(x_0)$ and between the increments of $f(t)$ for $t\in [0,t^*]$ and the increments of $F(x)$ for all $x$ in the ball of radius $t^*$ centered at $x_0$ for some $x_0$ are formulated, and it is shown that the inclusion has a solution in the ball under these conditions. The results on the operator inclusion obtained in the paper are applied to studying an integral inclusion.

Keywords: operator inclusion, existence and estimates of solutions, integral inclusion, vector metric space

Received February 15, 2024

Revised February 26, 2024

Accepted March 4, 2024

Funding Agency: The work was supported by the Russian Science Foundation (project no. 24-21-00272), https://rscf.ru/project/24-21-00272/.

Evgeny Semenovich Zhukovskiy, Dr. Phys.-Math. Sci., Prof., Scientific Research Institute of Mathematics, Physics, and Computer Science, Derzhavin Tambov State University, Tambov, 392000 Russia, e-mail: zukovskys@mail.ru

Elena Aleksandrovna Panasenko, Cand. Phys.-Math. Sci., Docent, Functional Analysis Department, Derzhavin Tambov State University, Tambov, 392000 Russia, e-mail: panlena_t@mail.ru

REFERENCES

1.   Krasovskii N.N. Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay. Stanford, Stanford Univ. Press, 1963, 188 p. Original Russian text published in Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Moscow, Gos. Izd. Fiz. Mat. Lit., 1959, 211 p.

2.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems, NY, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . This book is substantially revised version of the monograph: Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.

3.   Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions, London, Gordon and Breach, 1995, 625 p. ISBN: 978-2881249440 .

4.   Kryazhimskii A.V., Maksimov V.I. On combination of the processes of reconstruction and guaranteeing control. Autom. Remote Control, 2013, vol. 74, no. 8, pp. 1235–1248. doi: 10.1134/S0005117913080018

5.   Khlopin D.V., Chentsov A.G. On a control problem with incomplete information: quasi-strategies and control procedures with a model. Differ. Equ., 2005, vol. 41, no. 12, pp. 1727–1742. doi: 10.1007/s10625-006-0009-0

6.   Piliya A.D., Fedorov V.I. Singularities of the field of an electromagnetic wave in a cold anisotropic plasma with two-dimensional inhomogeneity. Soviet Physics — JETP, 1971, vol. 33, pp. 210.

7.   Davydov A.A. Limiting directions singularities of generic implicit higher-order ODEs. Proc. Steklov Inst. Math., 2002, vol. 236, pp. 124–131.

8.   Vlasenko L.A., Rutkas A.G. On a differential game in a system described by an implicit differential-operator equation. Differ. Equ., 2015, vol. 51, no. 6, pp. 798–807. doi: 10.1134/S0012266115060117

9.   Kantorovich L.V. Some further applications of the Newton method for functional equations. Vestn. Leningr. Univ., 1957, vol. 2, no. 7, pp. 68–103 (in Russian).

10.   Kantorovich L.V., Akilov G.P. Functional Analysis. Transl. from the 2nd Russian ed. NY, Pergamon Press, 1982, 604 p. doi: 10.1016/C2013-0-03044-7 . Original Russian text (3rd ed.) published in Kantorovich L.V., Akilov G.P. Funktsional’nyi analiz, Moscow, Nauka Publ., 1984, 752 p.

11.   Zubelevich O. Coincidence points of mappings in Banach spaces. Fixed Point Theory, 2020, vol. 21, no. 1, pp. 389–394. doi: 10.24193/fpt-ro.2020.1.27

12.   Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Kantorovichs fixed point theorem in metric spaces and coincidence points. Proc. Steklov Inst. Math., 2019, vol. 304, suppl. 1, pp. 60–73. doi: 10.1134/S008154381901005X

13.   Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. On the stability of fixed points and coincidence points of mappings in the generalized Kantorovichs theorem. Topol. Appl., 2020, vol. 275, art. no. 107030. doi: 10.1016/j.topol.2019.107030

14.   Zhukovskiy E.S. Comparison method for studying equations in metric spaces. Math. Notes, 2020, vol. 108, no. 5, pp. 679–687. doi: 10.1134/S0001434620110061

15.   Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., Zhukovskaya Z.T. Kantorovich’s fixed point theorem and coincidence point theorems for mappings in vector metric spaces. Set-Valued Var. Anal., 2022, vol. 30, pp. 397–423. doi: 10.1007/s11228-021-00588-y

16.   Zhukovskiy E., Panasenko E. Extension of the Kantorovich theorem to equations in vector metric spaces: applications to functional differential equations. Mathematics, 2024, vol. 12, no. 1, art. no. 64. doi: 10.3390/math12010064

17.   Perov A.I. Multidimensional version of M. A. Krasnoselskii’s generalized contraction principle. Funct. Anal. Appl., 2010, vol. 44, no. 1, pp. 69–72. doi: 10.1007/s10688-010-0008-z

18.   Zhukovskiy E.S. On coincidence points for vector mappings. Russian Math., 2016, vol. 60, no. 10, pp. 10–22. doi: 10.3103/S1066369X16100030

19.   Zhukovskiy E.S. On coincidence points of multivalued vector mappings of metric spaces. Math. Notes, 2016, vol. 100, no. 3, pp. 363–379. doi: 10.1134/S0001434616090030

20.   Zhukovskii E.S. Perturbations of vectorial coverings and systems of equations in metric spaces. Sib. Math. J., 2016, vol. 57, no. 2, pp. 230–241. doi: 10.1134/S0037446616020063

21.   Panasenko E.A. On operator inclusions in spaces with vector-valued metrics. Proc. Steklov Inst. Math. (Suppl.), 2023, vol. 323, suppl. 1, pp. S222–S242. doi: 10.1134/S0081543823060196

22.   Fomenko T.N., Yastrebov K.S. The method of searching for zeros of functionals on a conic metric space and its stability issues. Moscow Univ. Math. Bull., 2020, vol. 75, no. 2, pp. 58–64. doi: 10.3103/S0027132220020023

23.   Krasnosel’skii M.A., Zabreiko P.P. Geometrical methods of nonlinear analysis. Berlin, Springer, 1984, 412 p. ISBN: 978-3-642-69411-0 . Original Russian text published in Krasnosel’skii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Moscow, Nauka publ., 1975, 511 p.

24.   Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for mappings in partially ordered spaces. Topol. Appl., 2015, vol. 179, pp. 13–33. doi: 10.1016/j.topol.2014.08.013

25.   Zhukovskaya T.V., Filippova O.V., Shindyapin A.I. On the extension of Chaplygin’s theorem to the differential equations of neutral type. Russian Universities Reports. Mathematics, 2019, vol. 24, no. 127, pp. 272–280. doi: 10.20310/2686-9667-2019-24-127-272-280

26.   Zhukovskaya T.V., Zhukovskiy E.S., Serova I.D. Some questions of the analysis of mappings of metricand partially ordered spaces. Vestnik Ross. Univ. Mat., 2020, vol. 25, no. 132, pp. 345–358 (in Russian). doi: 10.20310/2686-9667-2020-25-132-345-358

27.   Burlakov E.O., Panasenko E.A., Serova I.D., Zhukovskiy E.S. On order covering set-valued mappings and their applications to the investigation of implicit differential inclusions and dynamic models of economic processes. Advances in Systems Science and Appl., 2022, vol. 22, no. 1, pp. 176—191. doi: 10.25728/assa.2022.22.1.1225

28.   Serova I.D. Study of the boundary value problem for a differential inclusion. Vestnik Ross. Univ. Mat., 2023, vol. 28, no. 144, pp. 395–405 (in Russian). doi: 10.20310/2686-9667-2023-28-144-395-405

29.   Borisovich Yu. G., Gel’man B. D., Myshkis A. D., Obukhovskii V. V. Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsial’nykh vklyuchenii [Introduction to the theory of multivalued maps and differential inclusions], Moscow, Librokom, 2011, 224 p. ISBN: 978-5-397-01526-4 .

Cite this article as: E.S. Zhukovskiy, E.A. Panasenko. The method of comparison with a model equation in the study of inclusions in vector metric spaces. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 2, pp. 68–85.