This work is devoted to proving the uniqueness of the solution to the inverse boundary value problem of heat conduction on a finite time interval. For these purposes, the original problem is extended to an infinite time interval, and then the Fourier transform in time is applied to the new problem. As a result, the problem is reduced to a system of ordinary differential equations, which is solved explicitly. A uniqueness theorem is proved for the inverse boundary value problem in Fourier images.
Keywords: inverse heat conduction problem, Fourier transform, ill-posed problem
Received October 10, 2023
Revised November 14, 2023
Accepted November 20, 2023
Vitalii Pavlovich Tanana, Dr. Phys.-Math. Sci., Prof., South Ural State University, Chelyabinsk, 454080 Russia, e-mail: tananavp@susu.ru
REFERENCES
1. Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. Extreme methods for solving ill-posed problems and their applications to inverse heat transfer problems, NY: Begell House, 1995, 306 p. ISBN: 1-56700-038-X . Original Russian text published in Alifanov O.M., Artyukhin E.A., Rumyantsev S.V., Ekstremal’nye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Moscow, Nauka publ., 1988, 288 p.
2. Tanana V.P., Sidikova A.I. Optimal methods for ill-posed problems with applications to heat conduction, Berlin, Boston: De Gruyter, 2018, 130 p. doi: 10.1515/9783110577211-fm
3. Tikhonov A.N., Vasilyeva A.B., Sveshnikov A.G. Differential equations, Berlin, Springer, 1985, 238 p. ISBN: 9780387130026. Original Russian text published in Tikhonov A.N., Vasilyeva A.B., Sveshnikov A.G., Differentsial’nye uravneniya, Moscow, Nauka Publ., 1985, 231 p.
4. Landis E.M. Some questions in the qualitative theory of elliptic and parabolic equations. Amer. Math. Soc. Transl., Series 2, 1962, vol. 20, p. 173–238. doi: 10.1090/trans2/020
5. Kabanikhin S.I. Inverse and ill-posed problems, Berlin, Boston: De Gruyter, 2011. doi: 10.1515/ 9783110224016 . Original Russian text published in Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Novosibirsk, Sibirskoe Nauchnoe Izd., 2009, 458 p. ISBN: 5-98365-003-3 .
6. Tikhonov A.N., Samarsky A.A. Equations of mathematical physics, NY, Dover Publ., 1990. ISBN: 978-0486664224 . Original Russian text published in Tikhonov A.N., Samarsky A.A., Uravneniya matematicheskoi fiziki, Moscow, Nauka Publ., 1977. 736 p.
Cite this article as: V.P. Tanana. On the uniqueness of the solution to the inverse boundary value problem for the heat equation on a finite time interval. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 1, pp. 223–236.