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ON RECOGNITION BY GRUENBERG–KEGEL GRAPH

OF FINITE NONABELIAN SIMPLE GROUPS

WITH ORDERS HAVING PRIME DIVISORS AT MOST 13

N.V. Maslova, L.G.Nechitailo

The spectrum of a finite group G is the set of all element orders of G. The Gruenberg—Kegel graph (or the
prime graph) Γ(G) of a finite group G is defined as follows. The vertex set of Γ(G) is the set of all prime divisors
of the order of G. Two distinct primes p and q are adjacent in Γ(G) if and only if there exists an element of
order pq in G. We say that the problem of recognition by Gruenberg–Kegel graph (by spectrum, respectively) is
solved for a finite group if the number of pairwise non-isomorphic finite groups with the same Gruenberg–Kegel
graph (spectrum, respectively) as the group under study is known. In 2005, A. V. Vasil’ev completed solving
the problem of recognition by spectrum for all finite nonabelian simple groups with orders having prime divisors
at most 13. In this paper we complete the solution of the problem of recognition by Gruenberg–Kegel graph for
these groups.
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Н. В.Маслова, Л. Г. Нечитайло. О распознавании по графу Грюнберга–Кегеля конечных

неабелевых простых групп, простые делители порядков которых не превосходят 13. Спектр
конечной группы G — это множество всех порядков элементов группы G. Граф Грюнберга—Кегеля (или
граф простых чисел) Γ(G) конечной группы G определяется следующим образом. Множество вершин
Γ(G) — это множество всех простых делителей порядка группы G. Два различных простых числа p и
q смежны в Γ(G) тогда и только тогда, когда в G существует элемент порядка pq. Мы говорим, что
задача распознавания по графу Грюнберга–Кегеля (соответственно, по спектру) решена для конечной
группы, если известно число попарно неизоморфных конечных групп с тем же графом Грюнберга–Кегеля
(соответственно, спектром), что и у изучаемой группы. В 2005 году А. В. Васильев завершил решение
задачи распознавания по спектру для всех конечных неабелевых простых групп с порядками, имеющими
простые делители, не превосходящие 13. В данной работе завершается решение задачи распознавания по
графу Грюнберга–Кегеля для этих групп.

Ключевые слова: конечная группа, простая группа, граф Грюнберга–Кегеля (граф простых чисел),
распознаваемость
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Introduction

Throughout the paper we consider only finite groups and simple graphs, and henceforth the term
group means finite group, the term graph means simple graph (undirected graph without loops and
multiple edges).

Let G be a group. The spectrum ω(G) of G is the set of all element orders of G. Denote by π(G)
the set of all prime divisors of |G| (equivalently, the set of all prime elements from ω(G)). The set
ω(G) defines the Gruenberg–Kegel graph (or the prime graph) Γ(G). The vertex set of this graph is
π(G), and two distinct vertices p and q are adjacent in this graph if and only if pq ∈ ω(G).

We say that a group G is

• recognizable by spectrum (Gruenberg–Kegel graph) if for each group H, ω(G) = ω(H)
(Γ(G) = Γ(H), respectively) if and only if G ∼= H;



2 N.V.Maslova, L.G.Nechitailo

• k-recognizable by spectrum (Gruenberg–Kegel graph), where k is a positive integer, if there are
exactly k pairwise non-isomorphic groups with the same spectrum (Gruenberg–Kegel graph,
respectively) as G;

• almost recognizable by spectrum (Gruenberg–Kegel graph), if G is k-recognizable by spectrum
(Gruenberg–Kegel graph, respectively) for some positive integer k;

• unrecognizable by spectrum (Gruenberg–Kegel graph), if there are infinitely many pairwise
non-isomorphic groups with the same spectrum (Gruenberg–Kegel graph, respectively) as G.

For a group G we denote by hω(G) and hΓ(G) the number of pairwise non-isomorphic groups H
with ω(H) = ω(G) and the number of pairwise non-isomorphic groups H with Γ(H) = Γ(G),
respectively. We say that problem of recognition by spectrum (by Gruenberg–Kegel graph) is solved
for a group G if the value of hω(G) (hΓ(G), respectively) is known. The problem of recognition
by spectrum is well-studied and is solved for the most part of simple groups (see, for example, a
survey paper [14]). An overview of the results on recognition by Gruenberg–Kegel graph can be
found in [6; 30]. Also in [6], it was proved that a group G is almost recognizable by Gruenberg–
Kegel graph if and only if each group H with Γ(H) = Γ(G) is almost simple, i. e. there exists
a nonabelian simple group S such that S ∼= Inn(S) E H ≤ Aut(S). In contrast, the problem of
recognition by Gruenberg–Kegel graph of almost simple groups is still far from being solved. In [55]
A.V.Vasil’ev solved the problem of recognition by spectrum for all nonabelian simple groups G
with π(G) ⊆ {2, 3, 5, 7, 11, 13}. We solve the problem of recognition by Gruenberg–Kegel graph for
the same set of groups. For many of them the recognition problem has already been solved and the
results have already been published, for some of them the results were known, but not published
due to their simplicity. We are closing these gaps.

The main result of this paper is the following theorem.

MAIN THEOREM. If G is finite nonabelian simple group such that prime divisors of |G| do
not exceed 13, then the problem of recognition by Gruenberg–Kegel graph is solved for G, and the
solution is presented in Table 1.

Table 1. Recognition by spectrum and Gruenberg–Kegel graph

G π(G) hω(G) reference hΓ(G) reference

A5 2, 3, 5 1 [42] ∞ Proposition 3

L2(7) 2, 3, 7 1 [40] ∞ Proposition 3

A6 2, 3, 5 ∞ [2] ∞ Proposition 1

L2(8) 2, 3, 5 1 [3] ∞ Proposition 2

L2(11) 2, 3, 5, 11 1 [3] 2 [17, Theorem 3]

L2(13) 2, 3, 7, 13 1 [3] ∞ [31, Proposition 5.2]

A7 2, 3, 5, 7 1 [2] 5 Proposition 4

L3(3) 2, 3, 13 ∞ [34; 45] ∞ Proposition 1

U3(3) 2, 3, 7 ∞ [33] ∞ Proposition 1

L2(25) 2, 3, 5, 13 1 [3] 2 [20, Theorem 3.1]

M11 2, 3, 5, 11 1 [48] 2 [17, Theorem 3]

L2(27) 2, 3, 7, 13 1 [3] 1 [21, Main Theorem]

A8 2, 3, 5, 7 1 [43] ∞ [51, P. 1008, Remark]

L3(4) 2, 3, 5, 7 1 [41] 1 [25, Theorem 9]

U4(2) 2, 3, 5 ∞ [33] ∞ Proposition 1

Sz(8) 2, 5, 7, 13 1 [47] ∞ [31, Main Theorem]

Continued on the next page
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Table 1: Continuation

G π(G) hω(G) reference hΓ(G) reference

L2(49) 2, 3, 5, 7 1 [3] 5 Proposition 4

U3(4) 2, 3, 5, 13 1 [37] ∞ Proposition 5

M12 2, 3, 5, 11 1 [48] ∞ [17, Remark 1]

U3(5) 2, 3, 5, 7 ∞ [33] ∞ Proposition 1

A9 2, 3, 5, 7 1 [39] ∞ Proposition 5

L2(64) 2, 3, 5, 7, 13 1 [44] ∞ Proposition 2

M22 2, 3, 5, 7, 11 1 [48] 1 [17, Theorem 3]

J2 2, 3, 5, 7 ∞ [36] ∞ Proposition 1

S6(2) 2, 3, 5, 7 2 [32; 50] ∞ Proposition 5

A10 2, 3, 5, 7 ∞ [33] ∞ Proposition 1

U4(3) 2, 3, 5, 7 1 [46] 5 Proposition 4

G2(3) 2, 3, 7, 13 1 [28] ∞ [31, Main Theorem]

S4(5) 2, 3, 5, 13 ∞ [34] ∞ Proposition 1

L4(3) 2, 3, 5, 13 1 [28] ∞ Proposition 6

U5(2) 2, 3, 5, 11 ∞ [33] ∞ Proposition 1
2F4(2)

′ 2, 3, 5, 13 1 [28] ∞ Proposition 6

A11 2, 3, 5, 7, 11 1 [39] ∞ [51, Introduction]

L3(9) 2, 3, 5, 7, 13 2 [38] ∞ Proposition 6

HS 2, 3, 5, 7, 11 1 [48] 2 [23, Theorem 2]

S4(7) 2, 3, 5, 7 ∞ [34] ∞ Proposition 1

O+
8 (2) 2, 3, 5, 7 2 [32; 50] ∞ Proposition 5

3D4(2) 2, 3, 7, 13 ∞ [35] ∞ Proposition 1

A12 2, 3, 5, 7, 11 1 [32] ∞ Proposition 5

G2(4) 2, 3, 5, 7, 13 1 [34] ∞ Proposition 5

M cL 2, 3, 5, 7, 11 1 [48] ∞ [22, Theorem 5]

S4(8) 2, 3, 5, 7, 13 ∞ [34] ∞ Proposition 1

A13 2, 3, 5, 7, 11, 13 1 [39] 1 [51, Lemma 24]

S6(3) 2, 3, 5, 7, 13 1 [34] ∞ Proposition 7

O7(3) 2, 3, 5, 7, 13 2 [50] ∞ Proposition 7

U6(2) 2, 3, 5, 7, 11 1 [49] 2 [23, Theorem 2]

U4(5) 2, 3, 5, 7, 13 2 [55] 3 Theorem 1

A14 2, 3, 5, 7, 11, 13 1 [58] ∞ [51, Lemma 26]

L5(3) 2, 3, 5, 11, 13 1 [8] 2 Theorem 2

Suz 2, 3, 5, 7, 11, 13 1 [48] 1 [23, Theorem 1]

A15 2, 3, 5, 7, 11, 13 1 [58] ∞ [51, Lemma 26]

O+
8 (3) 2, 3, 5, 7, 13 2 [50] ∞ Proposition 7

A16 2, 3, 5, 7, 11, 13 1 [58] ∞ [51, Introduction]

Fi22 2, 3, 5, 7, 11, 13 1 [48] 3 [22, Theorem 3]

L6(3) 2, 3, 5, 7, 11, 13 2 [55] 3 Theorem 3
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Crucial steps in the proof of MAIN THEOREM are the following three theorems.

Theorem 1. The group U4(5) is 3-recognizable by Gruenberg–Kegel graph.

Theorem 2. The group L5(3) is 2-recognizable by Gruenberg–Kegel graph.

Theorem 3. The group L6(3) is 3-recognizable by Gruenberg–Kegel graph.

1. Preliminaries

Our terminology and notation are mostly standard and can be found, for example, in [7].
However, it is worth recalling a few definitions for clarity. Let G and H be groups, p be a prime,
and π be a set of primes. We denote by S(G) the solvable radical of G (the largest solvable normal
subgroup of G), by F (G) the Fitting subgroup of G (the largest nilpotent normal subgroup of G),
and by Φ(G) the Frattini subgroup of G (intersection of all maximal subgroups of G). We denote a
semidirect product of G by H as G : H or G⋋H, by Op(G) we denote the largest normal p-subgroup
of G, by Op′(G) the largest normal subgroup of G whose order is not divisible by p, by Oπ(G) the
largest normal π-subgroup of G, and by Op(G) the smallest normal subgroup N of G such that
G/N is a p-group. Denote the number of connected components of Γ(G) by s(G), and the set of
connected components of Γ(G) by {πi(G) | 1 ≤ i ≤ s(G)}, for a group G of even order, we assume
that 2 ∈ π1(G). Denote by t(G) the independence number of Γ(G) (the greatest cardinality of a
coclique in Γ(G)), and by t(r,G) the greatest cardinality of a coclique in Γ(G) containing a prime r.

The following assertion is well-known and easy-proving.

Lemma 1. Let K be a normal subgroup of a group L. Then the following conditions hold:

(1) if r, s ∈ π(K) \ π(L/K) and r and s are non-adjacent in Γ(K), then they are also non-

adjacent in Γ(L);

(2) if r, s ∈ π(L/K) \ π(K), and r and s are non-adjacent in Γ(L/K), then they are also

non-adjacent in Γ(L);

(3) if A and B are normal subgroups of a group G such that A ≤ B and

r, s ∈ π(B/A) \ (π(A) ∪ π(G/B)),

then r and s are adjacent in Γ(G) if and only if r and s are adjacent in Γ(B/A).

The following assertion is also well-known and easy-proving, we provide its proof for
completeness.

Lemma 2. Let G be a finite group such that G/Op(G) is a simple group for some p ∈ π(G). Let

N be a minimal normal subgroup of G such that N ≤ Op(G) with non-trivial action by conjugation

of G/N on N . Let t ∈ π(G) \ {p} and assume that p · t 6∈ ω(G/N). Then the following statements

hold:

(1) N can be considered as a faithfull irreducible G/Op(G)-module;

(2) p · t ∈ ω(G) if and only if CN (x) 6= 1 for some x ∈ G/Op(G) with |x| = t.

Proof. Since Op(G) is nilpotent, we have N ≤ Z(Op(G)). Thus, N can be considered as a
G/Op(G)-module. Since N is minimal normal in G, the corresponding action of G/Op(G) on N
is irreducible. Since G/Op(G) is simple, the corresponding action is faithfull. Thus, statement (1)
holds.

If p · t ∈ ω(G), then there exists an element y ∈ G with |y| = p · t. Note that 〈y〉 ∩ N 6= 1,
otherwise |〈y〉N/N | = |〈y〉|, therefore p · t ∈ ω(G/N); a contradiction. Let y be the image of y in
G/Op(G). Then 1 6= 〈y〉 ∩N ≤ CN (y).

Let CN (x) 6= 1 for some x ∈ G/Op(G) with |x| = t. Let x be a preimage of x in G. Then
CN (x) = CN (x) 6= 1, therefore, p · t ∈ ω(G). Thus, statement (2) holds. �

A group G is called a Frobenius group if there is a subgroup H of G such that H ∩ Hg = 1
whenever g ∈ G \H. Let K = {1G} ∪ (G \ (∪g∈GH

g)) be the Frobenius kernel of G.
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Lemma 3 (see [1, 35.24 and 35.25], [5] and [52, Theorem 1]). Let G be a Frobenius group with

kernel K and complement H. Then K E G, K is nilpotent, G = K ⋊ H, CG(h) ≤ H for each

h ∈ H \ {1}, and CG(k) ≤ K for each k ∈ K \ {1}. In particular, K = F (G). Moreover, if U is

subgroup of order pq in H, where p and q are primes, then U is cyclic. In particular, for any odd

prime p, a Sylow p-subgroup of H is cyclic.

A 2-Frobenius group is a group G which contains a normal Frobenius subgroup R with Frobenius
kernel A such that G/A is a Frobenius group with Frobenius kernel R/A.

Lemma 4 [61, Lemma 3]. (1) If G is a solvable Frobenius group or a 2-Frobenius group, then

Γ(G) is the union of two connected components each of which is a clique.

(2) If G is a non-solvable Frobenius group, then Γ(G) is the union of two connected components,

one of the which is a complete graph and the other contains the vertices 2, 3, and 5 and is a clique

with deleted edge {3, 5}.

For a group with a disconnected Gruenberg–Kegel graph, the following theorem holds.

Lemma 5 (Gruenberg–Kegel theorem) [57, Theorem A]. If G is a group with disconnected

Gruenberg–Kegel graph, then one of the following statements holds:

(1) G is a Frobenius group;

(2) G is a 2-Frobenius group;

(3) G is an extension of a nilpotent π1(G)-group by a group A, where S E A ≤ Aut(S), S is a

nonabelian simple group with s(G) ≤ s(S), and A/S is a π1(G)-group.

Lemma 6 [29, Theorem 1]. Let G be a finite group with t(G) ≥ 3. Then G is non-solvable.

We will also need the following result, which generalizes the Gruenberg–Kegel theorem.

Lemma 7 [56]. Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2. Then the following

statements hold.

(1) There exists a nonabelian simple group S such that S E G = G/K ≤ Aut(S), where K is

the solvable radical of G.

(2) For every coclique ρ of Γ(G) of size at least three, at most one prime in ρ divides the product

|K| · |G/S|. In particular, t(S) ≥ t(G)− 1.

(3) One of the following two conditions holds:

(3.1) S ∼= A7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.

(3.2) Every prime p ∈ π(G) non-adjacent to 2 in Γ(G) does not divide the product |K| · |G/S|.
In particular, t(2, S) ≥ t(2, G).

Lemma 8 [6, Theorem 1.2]. Let G be a group. The following statements are equivalent:

(1) there exist infinitely many groups H such that Γ(G) = Γ(H);

(2) there exists a group H with non-trivial solvable radical such that Γ(G) = Γ(H).

Lemma 9 [51, Lemma 1]. Let N be a normal elementary abelian subgroup of a group G and

H = G/N . Let G1 = N ⋋H be the natural semidirect product of N and H. Then Γ(G) = Γ(G1).

Lemma 10 [10, Lemma 4]. Let G be a finite simple group, F be a field of characteristic p > 0,
V be an absolutely irreducible FG-module, and β be a Brauer character of V . If g ∈ G is an element

of prime order distinct from p, then

dimCV (g) = (β〈g〉, 1〈g〉) =
1

|g|

∑

x∈〈g〉

β(x).

The following lemma is well-known.

Lemma 11 ([12, Corollary 2.2], see also [9]). Let q = 2n and A ∈ SL2(q) have trace α and

eigenvalues λ, λ−1. Then there exists P ∈ SL2(q) such that one of the following statements holds:
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1. A′ = P−1AP =

(

1 µ

0 1

)

for some µ ∈ GF (2n) and the order of A′ is equal to 1 or 2.

2. A′ = P−1AP =

(

λ 0

0 λ−1

)

and the order A′ is a divisor of q − 1.

3. A′ = P−1AP =

(

0 1

1 α

)

and the order of A′ is a divisor of q + 1.

The following lemma is also well-known (see, e. g. [31, Lemma 2.13]).

Lemma 12. Let G be a group, g ∈ G be an element of order r, and φ be a non-trivial irreducible

representation of G on a non-zero vector space V . If the minimum polynomial degree of φ(g) equals

to r, then g fixes in V a non-zero vector.

Lemma 13 (see [32, Lemma 1] and [60, Lemma 2]). Let FC be a Frobenius group with

kernel F and cyclic complement C = 〈c〉. If FC acts faitfully on a vector space V over a field

of characteristic p such that (p, |F |) = 1, then the minimum polynomial of c on V is xn − 1.

Lemma 14 [53, Theorem 1.1]. Let G be one of the groups 2B2(q), where q > 2, 2G2(q), where

q > 3, 2F4(q), G2(q),
3D4(q). Let g ∈ G be an element of prime power order coprime to q. Let φ

be a non-trivial irreducible representation of G over a field F of characteristic l coprime to q. Then

the minimum polynomial degree of φ(g) equals |g|, unless possibly when G = 2F4(8), l = 3, p = 109
and φ(1) < 64692.

A subgroup H is called pronormal in a group G if H and Hg are conjugate in 〈H,Hg〉 for each
g ∈ G.

Lemma 15 [15, Lemma 4]. Let H ≤ A and AEG. The following statements are equivalent:

(1) H is pronormal in G;

(2) H is pronormal in A and G = ANG(H).

2. Propositions

Proposition 1. The groups A6, L3(3), U3(3), U4(2), U3(5), J2, A10, S4(5), U5(2), S4(7),
3D4(2), and S4(8) are unrecognizable by Gruenberg–Kegel graph.

Proof. These groups are unrecognizable by spectrum (see Table 1), therefore they are
unrecognizable by Gruenberg–Kegel graph. �

Proposition 2. The group L2(2
n) for n ≥ 2 is unrecognizable by Gruenberg–Kegel graph.

Proof. Let q = 2n for n ≥ 2. Consider the natural action of the group L = L2(q) ∼= SL2(q)
on the natural 2-dimensional vector space V over GF (q). We will show that each element of odd
prime order acts on V fixed-point-freely.

Let A ∈ SL2(q) be an element of odd prime order r. If A fixes some point of V , then A has an
eigenvalue λ = 1. By Lemma 11, the matrix A is conjugate to one of the following matrices:

• A′ =

(

λ 0

0 λ−1

)

, so A′ = E, where E is the identity matrix; a contradiction.

• A′ =

(

0 1

1 α

)

, so the characteristic polynomial of A is g(x) = x2 + αx+ 1. If λ = 1 is a root

of g(x), then α = 0, which means A′ =

(

0 1

1 0

)

. In this case, it is easy to see that the order

of A′ is equal to 2, which leads to a contradiction.
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Thus, elements of odd prime orders act on V fixed-point-freely, therefore we get Γ(L) = Γ(V ⋋ L).
From Lemma 8 we obtain that L = L2(q) is unrecognizable by Gruenberg–Kegel graph. �

In the following propositions we will use results by A. S.Kondrat’ev and I.V.Khramtsov [24;25].
Unfortunately, these papers contain a number of inaccuracies. In our paper we take into account
corrections provided in [27] and double check all calculations which require GAP [11].

Proposition 3. Groups A5 and L2(7) are unrecognizable by Gruenberg–Kegel graph.

Proof. Let G = A5. Since Γ(G) = Γ(A6) and A6 is unrecognizable by Gruenberg–Kegel graph,
we have that A5 is also unrecognizable by Gruenberg–Kegel graph.

Let G = L2(7) or G = L2(8). By [7], we have Γ(L2(7)) = Γ(L2(8)). From Proposition 2 is
follows that the group L2(8) is unrecognizable by Gruenberg–Kegel graph. Thus, the group L2(7)
is also unrecognizable by Gruenberg–Kegel graph. �

Proposition 4. The groups A7, U4(3), and L2(49) are 5-recognizable by Gruenberg–Kegel

graph.

Proof. By [7], Γ(A7) = Γ(U4(3)) = Γ(L2(49)) and is as follows:

2

5 7

3

.

Let G be a group such that Γ(G) = Γ(A7). By [25, Theorem 5], one of the following statements
holds:

1. G is isomorphic to one of the following groups: M11, L2(11), L3(4) : 21, L3(4) : 22, U4(3),
L2(25), L2(25) : 21, L2(25) : 23, S4(7).

2. G/F (G) is isomorphic to L2(49), L2(49) : 22 or L2(49) : 23, and F (G) is an abelian 7-group.

3. G/F (G) ∼= A7, and F (G) is an elementary abelian 2-group.

We have 11 ∈ π(M11), 11 ∈ π(L2(11)), and 13 ∈ π(L2(25)). Also in each of graphs Γ(L3(4) : 22),
Γ(S4(7)) and Γ(L2(49) : 22) vertices 2 and 7 are adjacent. By [7], Γ(L3(4) : 21) = Γ(A7).

Assume that G/F (G) is isomorphic to L2(49) or L2(49) : 23. We claim that F (G) = 1, otherwise
7 ∈ π1(G) by Lemma 5.

Assume that G/F (G) ∼= A7. By [26], if vertices 2 and 5 are non-adjacent in Γ(G), then G =
O2(G) ⋋ H, where H ∼= A7, and O2(G) is the direct product of minimal normal subgroups of G
each of which is isomorphic, as a G/O2(G)-module, to one of the two 4-dimensional irreducible
GF (2)A7-modules Vi for i ∈ {1, 2} that are conjugate with respect to an outer automorphism of
the group A7. Let P be a Sylow 7-subgroup of G. Then |P | = 7 and for each i, P acts on non-zero
vectors of the space Vi. We have that |Vi \ {0}| = 15 and lengths of P -orbits are powers of 7. Thus,
if vertices 2 and 7 are non-adjacent in Γ(G), then O2(G) = 1.

Thus, there are exactly five groups with same Gruenberg–Kegel graph:

A7, L2(49), L2(49) : 23, U4(3), L3(4) : 21. �

Proposition 5. The groups G2(4), U3(4), A9, S6(2), O+
8 (2), and A12 are unrecognizable by

Gruenberg–Kegel graph.

Proof. From the table of 2-modular Brauer characters of the G2(4) [19] and Lemma 10 we obtain
that Γ(G2(4)) = Γ(V ⋋ G2(4)), where V is a 6-dimensional absolutely irreducible GF (4)G2(4)-
module. Therefore, from Lemma 8 we see that G2(4) is unrecognizable by Gruenberg–Kegel graph.

From the table of 5-modular Brauer characters of the group U3(4) [19] and Lemma 10 we obtain
that Γ(U3(4)) = Γ(V ⋋ U3(4)), where V is a 12-dimensional absolutely irreducible GF (5)U3(4)-
module. Therefore, from Lemma 8 we see that U3(4) is unrecognizable by Gruenberg–Kegel graph.
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By [7], we have Γ(A9) = Γ(S6(2)) = Γ(O+
8 (2)). From [61] it follows that there exist solvable

groups H1 and H2 with Γ(H1) = Γ(A9) and Γ(H2) = Γ(A12). Thus, by Lemma 8, the groups A9,
S6(2), O

+
8 (2), and A12 are unrecognizable by Gruenberg–Kegel graph. �

Proposition 6. The groups L4(3),
2F4(2)

′, L3(9) are unrecognizable by Gruenberg–Kegel graph.

Proof. From [61] it follows that there exist non-solvable Frobenius groups G1 and G2 such that
Γ(G1) = Γ(2F4(2)

′) = Γ(L4(3)) and Γ(G2) = Γ(L3(9)). Since by Lemma 3, each Frobenius group has
non-trivial solvable radical, by Lemma 8, the groups L4(3),

2F4(2)
′, and L3(9) are unrecognizable

by Gruenberg–Kegel graph. �

Proposition 7. 1 The groups S6(3), O7(3), O
+
8 (3) are unrecognizable by Gruenberg–Kegel graph.

Proof. By [7], we have Γ(S6(3)) = Γ(O7(3)) = Γ(O+
8 (3)), and the graph is as follows:

13

7

5

2 3 .

Consider the group A = Aut(Sz(8)) = Sz(8):3. Γ(A) is as follows:

13

7

5

2 3 .

The table of 2-modular Brauer characters of A is available in GAP [11]. Using Lemma 10 one can
check that there exists an absolutely irreducible 48-dimensional GF (2)Aut(Sz(8))-module V such
that each element of order 13 acts on this module fixed-point-freely, while elements of order 5 and 7
have non-trivial fixed points. Thus,

Γ(V ⋋A) = Γ(S6(3)).

Then Lemma 8 implies that the groups S6(3), O7(3), and O+
8 (3) are unrecognizable by Gruenberg–

Kegel graph. �

3. Proof of Theorem 1

Let G = U4(5). Then by [11], Γ(G) is as follows:

5

2 3

13

7

.

Let H be a group such that Γ(H) = Γ(G). We have t(2,H) = 2 and t(H) = 3. Then, from
Lemma 7, it follows that there exists a nonabelian simple group S such that

S ≤ H = H/K ≤ Aut(S) for K = S(H).

Moreover, 7 ∈ π(H)\π(K) or S ∼= A7 or L2(q) for some odd q. Clearly, π(S) ⊆ {2, 3, 5, 7, 13}. Using
all these restrictions on π(S) and [59, Table 1], we get that S is isomorphic to one of the following
groups:

L2(q), where q ∈ {7, 8, 13, 25, 27, 49, 64}, U3(3), U3(5), L3(4), J2, U4(3), S4(7), S6(2), O
+
8 (2),

An, where 5 ≤ n ≤ 10, G2(3),
3 D4(2), Sz(8), U4(5), L3(9), S6(3), O7(3), G2(4), S4(8), O

+
8 (3).

1This proposition was also proved by Nikita Khismatov in his Master Thesis (Ural Federal University,
Yekaterinburg, 2022).
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We will consider all the possibilities case by case.

Let S ∼= L2(27), S4(7),
3D4(2), S6(3), O7(3), S4(8), or O+

8 (3). Then in Γ(S), vertices 2 and 7
are adjacent, therefore Γ(S) is not a subgraph of Γ(H), a contradiction.

Let S ∼= L2(64). Then 5 and 13 are adjacent in Γ(S), therefore Γ(S) it is not a subgraph of
Γ(H), a contradiction.

Let S ∼= L3(9). Then 7 and 13 are adjacent in Γ(S), therefore Γ(S) it is not a subgraph of Γ(H),
a contradiction.

Let S ∼= L2(7), L2(8), U3(3), A5, or A6. There exists a coclique {5, 7, 13} in Γ(H). According to
Lemma 7, at most one of these numbers can divide the product |K| · |G/S|. However, we find that
|{5, 7, 13} ∩ π(Aut(S))| = 1, this leads to a contradiction.

Let S ∼= An, where n ∈ {7, 8, 9, 10}, L3(4), L2(49), U3(5), J2, S6(2), U4(3), O
+
8 (2). Since |Aut(S)|

is not divisible by 13, we have 13 ∈ π(K). From Lemma 7 we obtain that 5 /∈ π(K) and 7 /∈ π(K).
We have K̃ = K/O{2,3}(K) 6= 1 and let H̃ = H/O{2,3}(K). Assume that K̃ = O13(K̃). By [7], S
has a subgroup T ∼= L2(7), and T has a subgroup Y ∼= 7 : 3 which is a Frobenius group. The kernel
of the subgroup Y acts on O13(K̃) fixed-point-freely. From Lemma 13, we have 3 · 13 ∈ ω(H); a
contradiction. Thus, K̃ 6= O13(K̃). An element of order 7 from H̃ acts on O{2,13}(K̃) fixed-point-

freely, therefore O{2,13}(K̃) is nilpotent by the Thompson theorem [52] and O{2,13}(K̃) = O13(K̃).

Thus, O3(K̃/O13(K̃)) 6= 1 and P = Z(O3(K̃/O13(K̃))) is a non-trivial normal 3-subgroup of
H̃/O13(K̃). Since 3 and 13 are non-adjacent in Γ(H), Lemma 3 implies that P is cyclic. Moreover,
each subgroup of P is characteristic in P , therefore, without loss of generality we can assume that
|P | = 3. Let C = CH̃/O13(K̃)(P ). Since P E H̃/O13(K̃), we have C E H̃/O13(K̃). Suppose that

5 ∈ π(C). We have 5 /∈ π(K) and since H̃/K̃ ∼= H/K is an almost simple group, we obtain that
C contains its socle, therefore, 13 ∈ π(C) and 13 · 3 ∈ ω(H), which is not the case. Let P0 be the
preimage of P in K̃. Then P0 is a normal {3, 13}-subgroup of H̃ and each element of order 5 from H̃
acts fixed-point-freely on P0. Thus, P0 is nilpotent by the Thompson theorem [52] and 3·13 ∈ ω(H);
a contradiction.

Let S ∼= L2(25). Since |Aut(S)| is not divisible by 7, we have 7 ∈ π(K). Let H̃ be the smallest
factor group of H with the property that 7 divides |S(H̃)|. Then O7(H̃) 6= 1 and 7 does not
divide |H̃/O7(H̃)|. Let T be a Sylow 5-subgroup of H̃/O7(H̃) and T1 be the preimage of T in H̃.
By [7], a Sylow 5-subgroup of S is non-cyclic, therefore, T is non-cyclic. By Lemma 3, we have
5 · 7 ∈ ω(T1) ⊂ ω(H); a contradiction.

Let S ∼= L2(13) or G2(3). Since by [7], |Aut(S)| is not divisible by 5, we have 5 in π(K).
Furthermore, since 3 · 7 /∈ ω(Aut(S)), by Lemma 1, at least one of the primes 3 and 7 divides
|K|. Applying Lemma 7, we obtain that at most one of the primes 5, 7, and 13 divides |K|. Since
we already have 5 in π(K), it follows that 3 is also in π(K) and 7 and 13 are not. By the Hall
theorems [18, Theorems 3.13 and 3.14], K has a {3, 5}-Hall subgroup T , and each two {3, 5}-Hall
subgroups of K are conjugate in K. We have T is pronormal in H, therefore, by Frattini’s argument
(see Lemma 15), H = KNH(T ). Since 13 does not divide |K|, there is an element of order 13 in
NH(T ) that acts on T fixed-point-freely. By the Thompson theorem [52], T is nilpotent. Replacing
an element of order 13 with an element of order 7, we obtain that a {2, 5}-Hall subgroup of K is
also nilpotent.

We now prove that
K = N ×R,

where R is a Sylow 5-subgroup of K and N is a {2, 3}-Hall subgroup of K. Since a {2, 5}-Hall and
a {3, 5}-Hall subgroups of K are nilpotent, we have

R ≤ CK(W ) and R ≤ CK(E),

where W and E are a Sylow 2-subgroup and a Sylow 3-subgroup of K, respectively. Thus, R ≤
CK(〈W,E〉), and so R ≤ CK(N). Therefore, we obtain the claimed decomposition.
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Let H̃ = H/(N × Φ(R)) and K̃ = (N × Φ(R)). By Lemma 9, Γ(H̃) = Γ(K̃ ⋋H) is a subgraph
of Γ(H). Without loss of generality, we can assume that H ∼= S and K̃ is an absolutely irreducible
H-module in characteristic 5. From the table of ordinary characters of S which is available in [7] and
Lemma 10, we obtain that each element of order 7 in S has non-trivial centralizer in each absolutely
irreducible S-module in characteristic 5. Thus, 7 · 5 ∈ ω(K̃ ⋋H), which contradicts that vertices 7
and 5 are non-adjacent in Γ(H).

Let S ∼= Sz(8) or G2(4). Since 2 and 7 are non-adjacent in Γ(G), Lemma 7 implies that 7 6∈ π(K).
If 5 ∈ π(K), then from Lemma 7 we obtain that 13 6∈ π(K). As in the case above, we have

K = N ×R,

where R is a Sylow 5-subgroup of K and N is a {2, 3}-Hall subgroup of K. Since by Lemma 14 each
element of order 7 from S has non-trivial centralizer in each irreducible S-module in characteristic 5,
as in the case above, we obtain that 7 · 5 ∈ ω(H); a contradiction.

Now suppose that 13 ∈ π(K). From Lemma 7 we obtain that 5 /∈ π(K). We have K̃ =
K/O{2,3}(K) 6= 1 and let H̃ = H/O{2,3}(K). Note that an element of order 7 from H̃ acts on

O{2,13}(K̃) fixed-point-freely, and therefore O{2,13}(K̃) is nilpotent by the Thompson theorem [52].

In particular, O{2,13}(K̃) = O13(K̃). If K̃ = O13(K̃), then since by Lemma 14 each element of
order 7 from S has non-trivial centralizer in each irreducible S-module in characteristic 13, as in
the case above, we obtain that 7 · 13 ∈ ω(H); a contradiction. Thus, O3(K̃/O13(K̃)) 6= 1 and P =
Z(O3(K̃/O13(K̃))) is a non-trivial normal 3-subgroup of H̃/O13(K̃). As above, Lemma 3 implies
that P is cyclic and without loss of generality we can assume that |P | = 3. Let C = CH̃/O13(K̃)(P ).

Since P E H̃/O13(K̃), we have CE H̃/O13(K̃). Suppose that 5 ∈ π(C). We have 5 /∈ π(K) and since
H̃/K̃ ∼= H/K is an almost simple group, we obtain that C contains its socle, therefore, 13 ∈ π(C)
and 13 · 3 ∈ ω(H), which is not the case. Let P0 be the preimage of P in K̃. Then P0 is a normal
{3, 13}-subgroup of H̃ and each element of order 5 from H̃ acts fixed-point-freely on P0. Thus, P0

is nilpotent by the Thompson theorem [52]. Since vertices 3 and 13 are non-adjacent in Γ(H) and
a Sylow 3-subgroup of P0 is non-trivial, a Sylow 13-subgroup of P0 is trivial; a contradiction.

Thus, we have K is {2, 3}-group. We claim that O2(K) is a Sylow 2-subgroup of K. To prove
this, we repeat the ideas presented in the proof of [55, Lemma 3.3, Case H]. Let H̃ = H/O2(K) and
K̃ = K/O2(K). If K̃ 6= O3(K̃), then P = Z(O2(K̃/O3(K̃))) is a non-trivial normal 2-subgroup of
K̃/O3(K̃) which acts faithfully on O3(K̃). As above, let

C = CH̃/O3(K̃)(P )E H̃/O3(K̃).

Suppose that 13 ∈ π(C). As above, in this case we conclude that C has a nonabelian composition
factor isomorphic to S, therefore, 7 ∈ π(C) and 2 · 7 ∈ ω(H); a contradiction. If X is a subgroup
of order 13 from H̃/O3(K̃), then by [13, Theorem 5.2.3], [P,X]X is a Frobenius group with cyclic
complement X. By Lemma 13, 13 · 3 ∈ ω(H); a contradiction. Thus, O2(K) is a Sylow 2-subgroup
of K.

Let 3 ∈ π(K). Then Γ(H̃/Φ(K̃)) is a subgraph of Γ(H). By Lemma 9, Γ(H̃/Φ(K̃)) =
Γ(K̃/Φ(K̃) ⋋ H̃/K̃). Lemma 14 implies that 3 · 13 ∈ ω(H); a contradiction. Thus, K is a 2-
group. From [7] we conclude that vertices 3 and 13 are non-adjacent in Γ(Aut(Sz(8))), therefore,
by Lemma 1, S ∼= G2(4) and Γ(S) is as follows:

5

2 3

13

7

.

Let H be a group of minimal order with the properties Γ(H) = Γ(G) and Soc(H/O2(H)) ∼=
G2(4) and let N be a minimal normal subgroup of H with N ≤ K. Since 2 and 7 are non-adjacent
in Γ(H), we have that H/N acts non-trivially on N . By Lemma 2, N can be considered as a faithfull
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irreducible H/O2(H)-module. By the minimality of H we have H/O2(H) ∼= G2(4) and CN (t) 6= 1
for some t ∈ H/O2(H) with |t| = 13. Let F be the splitting field of H/O2(H) over GF (2) and
M = F ⊗GF (2) N . Then for each x ∈ H/O2(H), CN (x) 6= 0 if and only if CM (x) 6= 0 since x has
a fixed point if and only if 1 is an eigenvalue of the characteristic polynomial of x. The table of 2-
modular Brauer characters of the group G2(4) is available in [19]. By Lemma 10, for each absolutely
irreducible G2(4)-module W in characteristic 2, an element of order 13 has a fixed point in W if
and only if an element of order 7 has a fixed point in W , therefore, 2 · 7 ∈ ω(H); a contradiction.
Thus, K = 1. Now we can use [7] to verify that Γ(Aut(G2(4))) 6= Γ(G).

Further proof heavily relies on the ideas presented in [55], where the recognizability of the
group U4(5) by spectrum was proved. Now we have S ∼= G. We aim to prove that K = 1. From
Lemma 7 we obtain that 7 does not divide |K|. Suppose that 13 ∈ π(K). Consider the centralizer
C = CH(K). If C 6≤ K, then CK/K is a normal subgroup of H/K which is almost simple, therefore,
S ≤ CK/K and so, 13 is adjacent to each vertex of Γ(H); a contradiction. This means that C ≤ K
and H/K acts faithfully on K. Consider a non-trivial 13-subgroup P = O13(K/O13′ (K)). Since S
has a non-cyclic Sylow 5-subgroup which acts on P , by Lemma 3, we obtain that 13 · 5 ∈ ω(H); a
contradiction. Thus, K is a {2, 3, 5}-group.

Since K is solvable, there exists p ∈ {2, 3, 5} such that Op(K) 6= K. Let

H̃ = (H/Op(K))/Φ(K/Op(K)) and K̃ = (K/Op(K))/Φ(K/Op(K)).

Then Γ(H̃) is a subgraph of Γ(H), K̃ is an elementary abelian p-group, and by Lemma 9, Γ(H̃) =
Γ(K̃ ⋋ H̃/K̃).

Let p = 2. By [4, Table 8.10, 8.33], the group S has a subgroup T1
∼= SU3(5). By [54, Theorem B]

and Lemma 12, each element of order 7 from T1 has non-trivial centralizer in each non-trivial
absolutely irreducible T1-module in characteristic 2. Thus, 7 · 2 ∈ ω(H); a contradiction.

Let p ∈ {3, 5}. By [4, Table 8.10, 8.33], the group S has a subgroup T2
∼= S4(5). From the

table of p-modular Brauer characters of the group T2 [19] and Lemma 10 we obtain that in each
absolutely irreducible T2-module in characteristic p, each element of order 13 has a fixed point (see
also [25, Theorem 6]). Thus, p · 13 ∈ ω(H); this contradiction completes the proof that K = 1.

At the final stage, we have GEH ≤ Aut(G). Since |Out(G)| = 4, we only need to consider three
cases. Using GAP [11], we can check that Γ(G) = Γ(U4(5).21) = Γ(U4(5).23), Γ(G) 6= Γ(U4(5).22),
and Γ(G) 6= Γ(Aut(G)). Therefore, G is 3-recognizable by Gruenberg–Kegel graph. �

4. Proof of Theorem 2

Let G = L5(3). Then by [11], Γ(G) is as follows:

5

2 3

13

11

.

Let H be a group with Γ(H) = Γ(G). Since vertices 5, 11, and 13 are pairwise non-adjacent in
Γ(H), Lemma 6 implies that H is non-solvable. Moreover, by Lemma 4, H is not a non-solvable
Frobenius group. Thus, by Lemma 5, A = H/F (H) is an almost simple group. Denote F (H) by K
and Soc(A) by S. By Lemma 5, 11 ∈ π(S) \ (π(K)∪ π(A/S)). Clearly, π(S) ⊆ π(G). By [59], there
are only five simple groups S such that 11 ∈ π(S) ⊂ {2, 3, 5, 11, 13} which are U5(2), L2(11), M11,
M12, and L5(3).

Let S ∼= U5(2). By [7], vertices 5 and 3 are adjacent in Γ(S), therefore Γ(S) is not a subgraph
of Γ(H); a contradiction.

Let S ∼= L2(11), M11, or M12. We have 13 /∈ π(Aut(S)), therefore 13 ∈ π(K). Note that by [7],
S has a subgroup X ∼= L2(11), and X has a subgroup F isomorphic to a Frobenius group 11 : 5.
Let H̃ = H/O13′(K). Since K is nilpotent, P = O13(K) is non-trivial. Since both 11 and 5 are



12 N.V.Maslova, L.G.Nechitailo

non-adjacent to 13 in Γ(H), F acts on H̃ faithfully, by Lemma 13, we obtain that 13 · 5 ∈ ω(H); a
contradiction.

Thus, S ∼= G. We aim to prove that K = 1. Note that by Lemma 5, π(K) ⊆ {2, 3, 5, 13}.
Since K is nilpotent, without loss of generality we can assume K is p-group. By [4, Table 8.18],
S has a subgroup F which is a Frobenius group 121 : 5. If p = 3 or 13, as above, F acts on
K faithfully, and therefore by Lemma 13, p · 5 ∈ ω(H); a contradiction. Suppose Let p ∈ {2, 5}.
By [54, Theorem B] and Lemma 12, each element of order 11 from F has non-trivial centralizer in
each absolutely irreducible F -module in characteristic p. Thus, 11 · p ∈ ω(H); a contradiction.

Thus, K = 1. Now from [11] we obtain that Γ(G) = Γ(Aut(G)). Thus, G is 2-recognizable by
Gruenberg–Kegel graph. �

5. Proof of Theorem 3

Let G = L6(3). Then by [11], Γ(G) is as follows:

5

3

2

13

7 11 .

Let H be a group with Γ(H) = Γ(G). Since vertices 5, 11, and 13 are pairwise non-adjacent
in Γ(H), by Lemma 6, H is non-solvable. Moreover, by Lemma 4, H is not a non-solvable Frobenius
group. Thus, by Lemma 5, A = H/F (H) is an almost simple group. Denote F (H) by K and Soc(A)
by S. By Lemma 5, 11 ∈ π(S) \ (π(K) ∪ π(A/S)). Using that 11 ∈ π(S) ⊆ {2, 3, 5, 7, 11, 13} and
[59, Table 1], we find that S is isomorphic to one of the following groups:

L2(11),M11,M12, U5(2),M22, A11,M
cL,HS,A12,

U6(2), L5(3), A13, A14, A15, L6(3), Suz,A16 , F i22.

Let S ∼= An for 11 ≤ n ≤ 16, Suz, or Fi22. By [7], in this case vertices 3 and 7 are adjacent
in Γ(S), therefore, Γ(S) is not a subgraph of Γ(H); a contradiction.

Let S ∼= L5(3), M11, M12, or U5(2). Since 7 does not divide |Aut(S)|, 7 divides |K|. From [11] we
obtain that a Sylow 3-subgroup of S is non-cyclic. Applying Lemma 3, we deduce that H/K acts on
O7(K) with non-trivial fixed points. Consequently, 3 and 7 are adjacent in Γ(H); a contradiction.

Let S ∼= L2(11), HS, U6(2), M22, or M cL. Since by [7], |Aut(S)| is not divisible by 13, we have
13 ∈ π(K). Note that by [7] and [4, Table 8.27], S has a subgroup F isomorphic to a Frobenius group
11 : 5. Let H̃ = H/O13′(K) and K̃ = K/O13′ (K). Since K is nilpotent, P = O13(K̃) is non-trivial.
Since 11 and 5 is not adjacent to 13 in Γ(H), the Frobenius group F acts on P faithfully, and then
by Lemma 13 we obtain 13 · 5 ∈ ω(G); a contradiction.

Thus, we have S = G. Now we are going to show that K = 1. Without loss of generality we can
assume K is a p-group for p ∈ π1(H). Let p 6= 3. Then by [4, Table 8.24], S has a subgroup F which
is a Frobenius group 35 : 121 with cyclic complement. Since S is simple we have CH(K) ≤ K, then F
acts on K faithfully and since p 6= 3 we can apply Lemma 13. Thus, 121 ·p ∈ ω(H); a contradiction.
Let p = 3. Then by [4, Table 8.24], S has a subgroup T isomorphic to S6(3). By [16, Theorem 1.3],
3 · 7 ∈ ω(G); a contradiction.

Therefore, we have G ≤ H ≤ Aut(G). Since |Out(G)| = 4, we only need to consider four cases.
Using GAP [11], we can check that Γ(G) = Γ(G〈γ〉) = Γ(G〈δγ〉) and Γ(G) 6= Γ(G〈δ〉), where γ
and δ are the standard graph automorphism and diagonal automorphism of G, respectively, and
Γ(G) 6= Γ(Aut(G)). Thus, G is 3-recognizable by Gruenberg–Kegel graph. �
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