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Конечные группы лиева типа образуют основной массив конечных простых групп, служащий моде-

лью для их классификации, и имеют тесные связи с другими областями математики. Важным классом

локальных подгрупп в конечной группе лиева типа являются параболические подгруппы. Пусть U — нор-

мальная подгруппа конечной группы P . Для главного ряда группы P , содержащего U , нормальный ряд

подгрупп группы U , образованный всеми попавшими в U членами этого главного ряда, будем называть

включенным в U фрагментом этого главного ряда. Нахождение всех включенных в U фрагментов глав-

ных рядов группы P влечет нахождение всех нормальных подгрупп группы P , содержащихся в U Пусть

G — конечная простая группа лиева типа над полем характеристики p, отличная от группы Титса 2F4(2)′,
и P — параболическая подгруппа в G с унипотентным радикалом U . Группа G называется специальной,

если p = 2 для групп G типов Cl, G2, F4,
2B2 или 2F4 и p = 3 для групп G типов G2 или 2G2. Зада-

ча нахождения всех фрагментов главных рядов группы P , включенных в U , для всех параболических

максимальных подгрупп P группы G исследовалась в работах ряда авторов, особенно в случае неспеци-

альных групп G. Представляющий значительный интерес случай специальных групп G был исследован в

меньшей общности. В настоящей работе завершается описание всех фрагментов главных рядов группы P ,

включенных в U , с указанием нижнего и верхнего центральных рядов группы U для всех специальных

групп G исключительного лиева типа и всех их параболических максимальных подгрупп P . Кроме того,

аналогичные результаты получены для группы Титса 2F4(2)′ и ее 2-локальных максимальных подгрупп.

Ключевые слова: конечная простая группа лиева типа, параболическая максимальная подгруппа, глав-

ный ряд, унипотентный радикал, фрагмент главного ряда.

A. S.Kondrat’ev, V. V.Korableva, V. I. Trofimov. On chief series of parabolic maximal

subgroups of finite simple groups of exceptional Lie type.

Finite groups of Lie type form the main array of finite simple groups, serving as a typical model for their

classification, and have close relations with other areas of mathematics. An important class of local subgroups

of finite groups of Lie type are their parabolic subgroups. Let U be a normal subgroup of a finite group P . For
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Введение

Конечные группы лиева типа образуют основной массив конечных простых групп, служа-
щий моделью для их классификации, и имеют тесные связи с другими областями математики.
Важным классом локальных подгрупп в конечной группе лиева типа являются параболические
подгруппы (см. [1; 2]). Нами исследуются нормальные унипотентные подгруппы параболиче-
ских максимальных подгрупп конечных простых групп исключительного лиева типа.

Под главными рядами конечных групп в этой работе нам будет удобно понимать убыва-
ющие главные ряды (с убывающей нумерацией членов). Пусть U — нормальная подгруппа
конечной группы P . Для главного ряда группы P , содержащего U , нормальный ряд подгрупп
группы U , образованный всеми попавшими в U членами этого главного ряда, будем назы-
вать включенным в U фрагментом этого главного ряда. Если подгруппа U нильпотентна, то
этот фрагмент является центральным рядом в U . Заметим, что для нормальной подгруппы U
конечной группы P задача нахождения всех фрагментов главных рядов группы P , включен-
ных в U , по существу, равносильна задаче нахождения всех нормальных подгрупп группы P ,
содержащихся в U . (Ясно, что множество всех членов всех фрагментов главных рядов груп-
пы P , включенных в U , совпадает с множеством всех нормальных подгрупп группы P ,
содержащихся в U ; с другой стороны, если известно множество всех нормальных подгрупп
группы P , содержащихся в U , то фрагментами главных рядов группы P , включенными в U ,
являются в точности неуплотняемые убывающие ряды таких нормальных подгрупп с первым
членом U и последним членом 1.)

Пусть G — конечная простая группа лиева типа над полем характеристики p,
отличная от группы Титса 2F4(2)

′, и P = U ⋊ L — параболическая подгруп-
па в G, где U = Op(P ) — унипотентный радикал и L — дополнение Леви в P
соответственно (см. [2]). Группа G называется специальной (см. [3]) или сингулярной [4, опре-
деление 1.12.8], если p = 2 для групп G типов Cl, G2, F4,

2B2 или 2F4 и p = 3 для групп G типов
G2 или 2G2. В специальных группах G коммутаторные соотношения, определяющие строение
унипотентных подгрупп (т. е. p-подгрупп), ведут себя особым образом и требуют отдельного
рассмотрения.

Нормальное строение параболических подгрупп неспециальных групп лиева типа весьма
детально исследованы в [3] и в части 3.2 из [4]. Также в части 3.2 из [4] и в ряде других работ
(см. разд. 1) для специальных групп лиева типа в отдельных случаях были построены фраг-
менты главных рядов их параболических максимальных подгрупп, включенные в унипотент-
ные радикалы, и найдены нижние и верхние центральные ряды этих унипотентных радикалов.
В настоящей работе для конечных простых групп исключительного лиева типа, являющихся
специальными, завершается описание всех фрагментов главных рядов параболических мак-
симальных подгрупп, включенных в их унипотентные радикалы (т. е., по существу, описание
всех нормальных подгрупп параболических максимальных подгрупп, содержащихся в их уни-
потентных радикалах), с указанием нижнего и верхнего центральных рядов унипотентных
радикалов (см. теорему 1). Аналогичные результаты получены для группы Титса 2F4(2)

′ и
ее 2-локальных максимальных подгрупп (см. теорему 2). Группа Титса 2F4(2)

′ (см. [5]) имеет
особый статус среди конечных простых групп. В отличие от 2F4(2) она не имеет BN -пары,
но согласно терминологии из [4], которой мы здесь следуем, считается простой группой лиева
типа в характеристике 2 (рассматриваемой нами ни как специальная, ни как неспециальная).
Аналогом параболических максимальных подгрупп в ней служат ее 2-локальные максималь-
ные подгруппы, которые являются пересечениями с 2F4(2)

′ параболических максимальных
подгрупп непростой группы 2F4(2) исключительного лиева типа.

Эти результаты потребовались нам при исследовании усиленной версии гипотезы Сим-
са о конечных примитивных группах подстановок с простым цоколем, изоморфным группе
исключительного лиева типа.
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1. Обозначения, терминология и формулировки теорем

Используемые в статье терминология и обозначения в основном стандартны (см., напри-
мер, [1; 2; 4; 6; 7]).

Зафиксируем некоторые обозначения, которых мы будем придерживаться во всей статье.
Пусть G — конечная простая группа лиева типа над полем GF (q) простой характеристики p,
отличная от 2F4(2)

′. В группе G подгруппа Бореля B и мономиальная подгруппа N , нор-
мализующая подгруппу Картана H = B ∩ N , образуют естественную BN -пару некоторого
ранга l с группой Вейля W = N/H, группа B есть полупрямое произведение максимальной
унипотентной подгруппы U и абелевой p′-подгруппы H. Подгруппы группы G, сопряженные с
подгруппами, содержащими подгруппу Бореля B, называются параболическими подгруппами
в G. В группе G имеется c точностью до сопряжения l параболических максимальных под-
групп с представителями Pk, 1 6 k 6 l, причем Pk имеет разложение Леви Pk = Uk ⋊ Lk, где
Uk = Op(Pk) — унипотентный радикал, а Lk — дополнение Леви параболической подгруппы Pk.

Предположим, что G имеет нормальный лиев тип. Пусть Φ — соответствующая G корневая
система из l-мерного евклидова пространства, π = {p1, . . . , pl} — множество фундаментальных
корней в Φ и Φ+ — множество положительных корней в Φ относительно π. Упорядочение
корней в π предполагается согласованным со стандартным упорядочением вершин в диаграмме
Дынкина корневой системы Φ (см. [1, табл. I–IX]). Обозначим произвольный корень

∑l
i=1 tipi

из Φ, где t1, . . . , tl ∈ Z, через t1 . . . tl. Для любого k ∈ {1, . . . , l} через Φk обозначим множество
корней из Φ, натянутых на π \ {pk}, и положим Φ+

k = Φ+ ∩ Φk. Для любого корня r ∈ Φ
через Xr обозначается соответствующая r корневая подгруппа в G, через xr(t) — корневой
элемент из Xr, соответствующий элементу t поля GF (q). Положим xr = xr(1) для r ∈ Φ.
Группа Вейля W указанной BN -пары отождествляется с группой Вейля корневой системы Φ.
Для k ∈ {1, . . . , l} полагаем Pk = Uk ⋊ Lk, где Uk = 〈Xr | r ∈ Φ+ \Φ+

k 〉 и Lk = 〈H,Xr | r ∈ Φk〉.

Если группа G имеет скрученный лиев тип, то в G также определяются корневые подгруп-
пы (см. [2; 4]).

Подгруппа H нормализует каждую корневую подгруппу X из G, при этом неединич-
ная H-допустимая подгруппа из X совпадает с подгруппой X или ее подгруппой Фраттини
(см. [2;4]). При q > 5, более того, из [8, лемма 3] следует, что любая неединичная H-допустимая
унипотентная подгруппа группы G является произведением подгрупп, каждая из которых рав-
на корневой подгруппе или ее подгруппе Фраттини. Заметим, что, используя рассуждения из
доказательства леммы 3 работы [8], можно доказать, что то же заключение справедливо (без
привлечения подгрупп Фраттини) и для G = F4(4).

Пусть Φ — корневая система типа G2. Тогда Φ+ состоит из элементов (см. [1, табл. IX]),
которые мы занумеруем следующим образом:

r1 = 10, r2 = 01, r3 = 11, r4 = 21, r5 = 31, r6 = 32.

При этом в дальнейшем для сокращения записи мы для i ∈ {1, . . . , 6} будем обозначать Xri

через Xi, xri(t), где t ∈ GF (q), через xi(t), X−ri через X−i, а x−ri(t), где t ∈ GF (q), через x−i(t)
(таким образом, xi = xri(1) и x−i = x−ri(1)). Для сокращения записи мы будем, кроме того,
для произвольных ri1 , . . . , rim ∈ Φ+ через 〈i1, . . . , im〉 обозначать подгруппу 〈Xri1

, . . . ,Xrim 〉.
Далее, имеется подстановка (r1, r2)(r3, r5)(r4, r6) на множестве Φ+, индуцированная симмет-
рией диаграммы Дынкина типа G2 (см. [2, лемма 12.3.2]). Если p = 3, то соответствующий
этой подстановке графовый автоморфизм группы G2(3

f ) переставляет параболические мак-
симальные подгруппы P1 и P2 этой группы. Поэтому для решения поставленной нами задачи
при G = G2(3

f ) достаточно решить ее только для P1.

Пусть Φ — корневая система типа F4. Тогда Φ+ состоит из элементов (см. [1, табл. VIII]),



4 А.С.Кондратьев, В.В.Кораблева, В.И.Трофимов

которые мы занумеруем следующим образом:

r1 = 1000 , r2 = 0100 , r3 = 0010 , r4 = 0001 , r5 = 1100 , r6 = 0110 , r7 = 0011 , r8 = 1110 ,
r9 = 0120 , r10 = 0111 , r11 = 1120 , r12 = 1111 , r13 = 0121 , r14 = 1220 , r15 = 1121 , r16 = 0122 ,
r17 = 1221 , r18 = 1122 , r19 = 1231 , r20 = 1222 , r21 = 1232 , r22 = 1242 , r23 = 1342 , r24 = 2342.

При этом в дальнейшем для сокращения записи мы (аналогично случаю системы корней ти-
па G2) для i ∈ {1, . . . , 24} будем обозначать Xri через Xi, xri(t), где t ∈ GF (q), через xi(t), X−ri

через X−i, а x−ri(t), где t ∈ GF (q), через x−i(t) (таким образом, xi = xri(1) и x−i = x−ri(1)).
Для сокращения записи мы будем, кроме того, для произвольных ri1 , . . . , rim ∈ Φ+ через
〈i1, . . . , im〉 обозначать подгруппу 〈Xri1

, . . . ,Xrim 〉. Далее, имеется подстановка

(r1, r4)(r2, r3)(r5, r7)(r6, r9)(r8, r16)(r10, r11)(r12, r18)(r13, r14)(r15, r20)(r17, r22)(r19, r23)(r21, r24)

на множестве Φ+, индуцированная нетривиальной симметрией диаграммы Дынкина типа F4

(см. [2, лемма 12.3.2]). Соответствующий этой подстановке графовый автоморфизм груп-
пы F4(2

f ) переставляет параболические максимальные подгруппы этой группы: P1 с P4 и
P2 с P3. Поэтому для решения поставленной нами задачи при G = F4(2

f ) достаточно решить
ее только для P1 и P2.

Построение и свойства группы G = 2F4(q) для q = 22f+1 > 2 можно найти в [9] или [2].
Р. Ри в [9] ввел в рассмотрение элементы α1(t), . . ., α12(t), α−1(t), . . ., α−12(t), где t ∈ GF (q).
Элементы α1(t), . . ., α12(t), где t ∈ GF (q), порождают максимальную унипотентную подгруп-
пу U в G. Любой элемент из U можно однозначно записать в виде

∏12
i=1 αi(ti) для ti ∈ GF (q).

В G есть точно две параболические максимальные подгруппы, содержащие подгруппу Боре-
ля B = UH, а именно: P1 = 〈B,α−1(t), α−2(t) | t ∈ GF (q)〉 и P2 = 〈B,α−3(t) | t ∈ GF (q)〉 (см.,
например, раздел II из [10]). Положим αi = αi(1) и α−i = α−i(1) для 1 6 i 6 12.

Как было сказано во введении, в настоящей работе нас будет интересовать задача описа-
ния для всех исключительных групп лиева типа, являющихся специальными, всех фрагмен-
тов главных рядов их параболических максимальных подгрупп, включенных в унипотентные
радикалы (т. е., по существу, всех нормальных подгрупп их параболических максимальных
подгрупп, содержащиеся в унипотентных радикалах), а также описания для всех исключи-
тельных групп лиева типа, являющихся специальными, нижних и верхних центральных рядов
унипотентных радикалов параболических максимальных подгрупп. Кроме того, нас будет ин-
тересовать задача описания для группы Титса всех фрагментов главных рядов ее 2-локальных
максимальных подгрупп, включенных в их наибольшие нормальные 2-подгруппы, с указанием
нижних и верхних центральных рядов этих наибольших нормальных 2-подгрупп.

Конечная простая группа G исключительного лиева типа, является специальной, если G
изоморфна одной из следующих групп (где f > 1, если не оговорено противное): 2B2(2

2f+1);
2G2(3

2f+1); G2(2
f ), где f > 1; G2(3

f ); 2F4(2
2f+1); F4(2

f ).

Для групп 2B2(2
2f+1) и 2G2(3

2f+1), имеющих лиев ранг 1, строение параболических под-
групп исчерпывающим образом исследовано соответственно в [11] и [12], где, в частности,
указаны единственные существующие фрагменты их главных рядов, включенные в унипотент-
ные радикалы, и доказано совпадение этих фрагментов с нижним и верхним центральными
рядами унипотентных радикалов.

Для группы G2(2
f ), где f > 1, и k = 1, 2 в [4, пример 3.2.4] указан единственный существу-

ющий фрагмент главных рядов группы Pk, включенный в Uk, а также указаны (совпадающие)
нижний и верхний центральные ряды группы Uk.

Для группы G2(3
f ) и k = 1 в [4, пример 3.2.4] указан единственный существующий фраг-

мент главных рядов группы P1, включенный в U1, а также указаны нижний и верхний цен-
тральные ряды группы U1. (Как отмечено ранее, ввиду наличия у группы G2(3

f ) автомор-
физма, меняющего местами подгруппы P1 и P2, случай k = 2 для группы G2(3

f ) не требует
отдельного рассмотрения.)
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Для группы 2F4(2
2f+1) и k = 1 из [4, пример 3.2.4] и [13] следует, что указанный в

[4, пример 3.2.4] фрагмент главного ряда подгруппы P1, включенный в ее унипотентный ра-
дикал U1, является единственным. В [13] указаны системы порождающих (из множества
{α3(t), . . . , α12(t) | t ∈ GF (22f+1)}) для членов этого ряда и найдены нижний и верхний цен-
тральные ряды унипотентного радикала U1. Для группы 2F4(2

2f+1) и k = 2 вопрос об описа-
нии фрагментов главных рядов группы P2, включенных в U2 оставался, насколько известно
авторам, открытым (хотя, как представляется, такое описание может быть получено с исполь-
зованием [14, §10]). В настоящей работе нами строится единственный существующий фрагмент
главных рядов группы P2, включенный в U2, и доказывается его совпадение с нижним и верх-
ним центральными рядами группы U2.

Для группы F4(2
f ) и k = 1 в [4, пример 3.2.4] указан единственный существующий фраг-

мент главных рядов группы P1, включенный в U1, а также указаны нижний и верхний цен-
тральные ряды группы U1. Однако (оказавшийся более сложным, как это будет видно из
дальнейшего) вопрос об описании фрагментов главных рядов группы P2, включенных в U2,
оставался открытым. В настоящей работе нами дается ответ на этот вопрос с указанием ниж-
них и верхних центральных рядов унипотентного радикала U2. (Как отмечено ранее, ввиду
наличия у группы F4(2

f ) автоморфизма, меняющего местами подгруппы P1 и P4, P2 и P3,
случаи k = 3, 4 для группы F4(2

f ) не требуют отдельного рассмотрения.)
Таким образом, в настоящей работе завершается описание для конечных про-

стых групп исключительного лиева типа, являющихся специальными, всех фрагмен-
тов главных рядов параболических максимальных подгрупп, включенных в их унипо-
тентные радикалы, с указанием нижних и верхних центральных рядов этих унипо-
тентных радикалов (см. теорему 1). В остававшихся нерассмотренными случаях чле-
ны всех найденных рядов задаются явным образом их системами порождающих.
В связи с этим мы сочли целесообразным включить в формулировку теоремы 1 также пере-
численные выше ранее рассмотренные случаи, задавая члены всех указанных в этих случаях
рядов явным образом их системами порождающих. При этом мы не включили в доказатель-
ство теоремы 1 обоснований того, что члены построенных ранее рядов имеют указанные в
теореме системы порождающих, поскольку такие обоснования с использованием коммутатор-
ных соотношений не представляют каких-либо принципиальных трудностей.

Теорема 1. Пусть G — конечная простая группа исключительного лиева типа и лиева

ранга l > 1, Pk = Uk ⋊ Lk, где 1 ≤ k ≤ l, — параболическая максимальная подгруппа в G.

Тогда справедливы следующие утверждения.

(1) Если G = G2(2
f ) и f > 1, то при k = 1 существует единственный фрагмент главных

рядов группы P1, включенный в ее унипотентный радикал U1:

U1 > Y2 > Y1 > 1, где U1 = 〈1, 3, 4, 5, 6〉, Y2 = 〈4, 5, 6〉, Y1 = 〈5, 6〉,

при этом нижний и верхний центральные ряды группы U1 совпадают и имеют вид

U1 > Y1 > 1;

а при k = 2 единственный существующий фрагмент главных рядов группы P2, включен-

ный в ее унипотентный радикал U2, совпадает с нижним и верхним центральными рядами

группы U2 и имеет вид U2 > Z1 > 1, где U2 = 〈2, 3, 4, 5, 6〉, Z1 = 〈6〉.

(2) Если G = G2(3
f ), то при k = 1 существуют точно два фрагмента главных рядов

группы P1, включенные в ее унипотентный радикал U1:

U1 > Y2 > Y1 > 1 и U1 > Y2 > Y0 > 1,

где U1 = 〈1, 3, 4, 5, 6〉, Y2 = 〈4, 5, 6〉, Y1 = 〈4〉, Y0 = 〈5, 6〉, при этом нижним и верхним

центральными рядами группы U1 являются соответственно

U1 > Y1 > 1 и U1 > Y2 > 1.
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(3) Если G = 2F4(q), где q = 22f+1 > 2, то при k = 1 существует единственный фрагмент

главных рядов группы P1, включенный в ее унипотентный радикал U1:

U1 > Y3 > Y2 > Y1 > 1,

где U1 = 〈αi(ti) | ti ∈ GF (q), i = 3–12〉, Y3 = 〈αi(ti) | ti ∈ GF (q), i = 5, 8–12〉, Y2 = 〈αi(ti) | ti ∈
GF (q), i = 8–12〉, Y1 = 〈α12(t) | t ∈ GF (q)〉, при этом нижний и верхний центральные ряды

группы U1 совпадают и имеют вид

U1 > Y2 > Y1 > 1;

а при k = 2 единственный существующий фрагмент главных рядов группы P2, включенный в

ее унипотентный радикал U2, совпадает с нижним и верхним центральными рядами груп-

пы U2 и имеет вид

U2 > Z4 > Z3 > Z2 > Z1 > 1,

где U2 = 〈αi(ti) | ti ∈ GF (q), i = 1, 2, 4–12〉, Z4 = 〈αi(ti) | ti ∈ GF (q), i = 2, 5–12〉, Z3 = 〈αi(ti) |
ti ∈ GF (q), i = 7, 9–12〉, Z2 = 〈αi(ti) | ti ∈ GF (q), i = 10, 11, 12〉, Z1 = 〈αi(ti) | ti ∈ GF (q), i =
11, 12〉.

(4) Если G = F4(2
f ), то при k = 1 существует единственный фрагмент главных рядов

группы P1, включенный в ее унипотентный радикал U1:

U1 > Y2 > Y1 > 1,

где U1 = 〈1, 5, 8, 11, 12, 14, 15, 17–24〉, Y2 = 〈8, 12, 15, 17, 19, 21, 24〉, Y1 = 〈24〉, при этом нижним

и верхним центральными рядами группы U1 являются соответственно

U1 > Y1 > 1 и U1 > Y2 > 1;

а при k = 2 в случае f > 1 существуют точно два фрагмента главных рядов группы P2,
включенные в ее унипотентный радикал U2:

U2 > Z4 > Z3 > Z2 > Z1 > 1 и U2 > Z4 > Z3 > Z2 > Z0 > 1,

где U2 = 〈2, 5, 6, 8–24〉, Z4 = Z3〈6, 8, 10, 12, 13, 15〉, Z3 = Z2〈14, 20, 22〉, Z2 = Z1 × Z0, Z1 =
〈23, 24〉 и Z0 = 〈17, 19, 21〉, при этом нижним и верхним центральными рядами группы U2

являются соответственно

U2 > Z3 > Z1 > 1 и U2 > Z4 > Z2 > 1,

а в случае f = 1 существуют точно четыре фрагмента главных рядов группы P2, включенные

в ее унипотентный радикал U2:

U2 > Z4 > Z3 > Z2 > Z1 > 1, U2 > Z4 > Z3 > Z2 > Z0 > 1,

U2 > Z4 > Z̃3 > Z2 > Z1 > 1 и U2 > Z4 > Z̃3 > Z2 > Z0 > 1,

где U2 = 〈2, 5, 6, 8–24〉, Z4 = Z3〈6, 8, 10, 12, 13, 15〉, Z3 = Z2〈14, 20, 22〉, Z2 = Z1 × Z0, Z1 =
〈23, 24〉, Z0 = 〈17, 19, 21〉 и Z̃3 = 〈x6x14, x8x14, x10x20, x12x20, x13x22, x15x22〉Z2, при этом ниж-

ним и верхним центральными рядами группы U2 являются соответственно

U2 > Z3 > Z1 > 1 и U2 > Z4 > Z2 > 1.
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В группе 2F4(2) подгруппа Бореля B и мономиальная подгруппа N образуют BN -пару,
причем N ∩ B = 1 и N = W ∼= D16. В 2F4(2) есть точно две параболические максимальные
подгруппы, содержащие подгруппу B, а именно, P1 = 〈B,α−1, α−2〉 и P2 = 〈B,α−3〉. Простая
группа Титса G = 2F4(2)

′ является подгруппой группы 2F4(2) индекса 2.

Положим B0 = B ∩ G. Силовская 2-подгруппа B0 группы G содержится в 2-локальных
максимальных подгруппах P1 ∩ G и P2 ∩ G группы G, и каждая 2-локальная максимальная
подгруппа группы G сопряжена в ней с одной из этих подгрупп (см. [6]). Группа B0 порождает-
ся элементами α1α5, α4α5, α6α5, αi, где i = 3, 7–12, причем элементы αi, i = 3, 7–12, и элементы
(α1α5)

2 = α2α12, (α4α5)
2 = α8α9, (α6α5)

2 = α10α11 являются инволюциями (см. [15]).

Для 2-локальной максимальной подгруппы P1 ∩G группы G в [16, лемма 1] построен фраг-
мент главного ряда подгруппы P1 ∩G, включенный в O2(P1 ∩G) и совпадающий с нижним и
верхним центральными рядами O2(P1 ∩G) и потому (будучи включенным в O2(P1 ∩G) фраг-
ментом главного ряда P1 ∩G, совпадающим с верхним центральным рядом O2(P1 ∩G)) являю-
щийся единственным фрагментом главного ряда подгруппы P1 ∩G, включенным в O2(P1 ∩G).
В [15] приведены наборы указанных порождающих группы B0, которые порождают члены
этого единственного фрагмента главного ряда P1 ∩G, включенного в O2(P1 ∩G). В настоящей
работе для 2-локальной максимальной подгруппы P2 ∩ G группы G найдены все фрагменты
главных рядов, включенные в O2(P2 ∩G), с указанием нижнего и верхнего центральных рядов
подгруппы O2(P2 ∩G).

Таким образом, в настоящей работе завершается для группы Титса описание всех фраг-
ментов главных рядов 2-локальных максимальных подгрупп, включенных в их наибольшие
нормальные 2-подгруппы, с указанием нижних и верхних центральных рядов этих наиболь-
ших нормальных 2-подгрупп (см. теорему 2). Мы сочли целесообразным включить в форму-
лировку теоремы и случай подгруппы P1 ∩ G, заключение для которого, как замечено выше,
следует из [16, лемма 1] и [15]. Как в случае подгруппы P1 ∩ G, так и в случае подгруппы
P2 ∩G члены всех найденных рядов задаются явным образом их системами порождающих.

Теорема 2. Пусть G = 2F4(2)
′ и Pk, где 1 ≤ k ≤ 2, — параболическая максимальная

подгруппа в 2F4(2). Тогда при k = 1 единственный существующий фрагмент главных рядов

группы P1 ∩ G, включенный в O2(P1 ∩ G), совпадает с нижним и верхним центральными

рядами группы O2(P1 ∩G) и имеет вид

O2(P1 ∩G) > Y2 > Y1 > 1,

где O2(P1 ∩ G) = 〈α4α5, α6α5, α3, αi | i = 7–12〉, Y2 = 〈αi | i = 8–12〉, Y1 = 〈α12〉); а при k = 2
существуют точно два фрагмента

O2(P2 ∩G) > Z5 > Z4 > Z3 > Z2 > Z1 > 1 и O2(P2 ∩G) > Z5 > Z̃4 > Z3 > Z2 > Z1 > 1

главных рядов группы P2 ∩ G, включенные в O2(P2 ∩ G), где O2(P2 ∩ G) =
〈α1α5, α4α5, α6α5, αi | i = 7–12〉, Z5 = 〈α2, α6α5, αi | i = 7–12〉, Z4 = 〈α6α5, αi | i = 7, 9–12〉,
Z3 = 〈αi | i = 7, 9–12〉, Z2 = 〈αi | i = 10–12〉, Z1 = 〈α11, α12〉 и Z̃4 = 〈α2α8, α6α5α8, αi | i =
7, 9–12〉, при этом нижним и верхним центральными рядами группы O2(P2 ∩ G) являются

соответственно

O2(P2 ∩G) > Z4 > Z3 > Z2 > Z1 > 1 и O2(P2 ∩G) > Z5 > Z3 > Z2 > Z1 > 1.

2. Доказательство теоремы 1

Как было объяснено перед формулировкой теоремы 1, в доказательстве нуждается лишь
п. (3) этой теоремы при k = 2 и п. (4) этой теоремы при k = 2.

Пусть G = 2F4(q), где q = 22f+1 > 2, и k = 2.
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Будем использовать разложение Леви P2 = U2 ⋊ L2, где U2 = 〈αi(ti) | i = 1, 2, 4–12, ti ∈
GF (q)〉 и L2 = 〈H,α3(u), α−3(u) | u ∈ GF (q)〉. В статье [13] приведен список всех нетривиаль-
ных коммутаторных соотношений между элементами αi(t), i = 1–12, t ∈ GF (q), порождающи-
ми силовскую 2-подгруппу группы P2. Дополним его всеми нетривиальными коммутаторными
соотношениями между элементами вида α−3(u), u ∈ GF (q), и порождающими вида αi(t), где
i = 1, 2, 4–12 и t ∈ GF (q), группы U2 (элементы α−3(u), u ∈ GF (q), и αi(t), где i = 1, 2, 4–12
и t ∈ GF (q), порождают отличную от 〈αi(t) | i = 1–12, t ∈ GF (q)〉 силовскую 2-подгруппу
группы P2):

[α4(t), α−3(u)] = α1(tu)α6(t
2θ+1u2θ)α9(t

2θ+2u)α11(t
4θ+3u2θ+2)α12(t

4θ+3u2θ+1),

[α5(t), α−3(u)] = α2(tu
2θ)α7(t

2θu)α11(t
2θ+1u),

[α6(t), α−3(u)] = α2(tu),

[α8(t), α−3(u)] = α2(tu
2θ+1)α5(tu)α6(tu

2θ)α7(t
2θu2θ+1)α9(t

2θu)α10(t
2u2θ+1)α11(t

2θ+1u2θ+2),

[α9(t), α−3(u)] = α7(tu
2θ)α10(t

2θu),

[α12(t), α−3(u)] = α11(tu).

В [17], к сожалению, неверно указан фрагмент главных рядов группы P2, включенный
в ее унипотентный радикал U2. Далее мы докажем, что один из фрагментов главных рядов
группы P2, включенный в U2, имеет вид

U2 > Z4 > Z3 > Z2 > Z1 > 1,

где Z4 = 〈αi(ti) | ti ∈ GF (q), i = 2, 5–12〉, Z3 = 〈αi(ti) | ti ∈ GF (q), i = 7, 9–12〉, Z2 = 〈αi(ti) |
ti ∈ GF (q), i = 10, 11, 12〉, Z1 = 〈αi(ti) | ti ∈ GF (q), i = 11, 12〉.

В [18] доказано, что (в наших обозначениях) подгруппы Zi для 1 ≤ i ≤ 4 нормальны в P2.
Пусть S1 = 〈α3(u) | u ∈ GF (q)〉U2 и S2 = 〈α−3(u) | u ∈ GF (q)〉U2 — различные силовские

2-подгруппы группы O2′(P2). Ввиду O2′(P2/U2) ∼= SL2(q) имеем 〈S1, S2〉 = O2′(P2).
Полагая Z0 = 1 и Z5 = U2, получаем, что для каждого i, 0 6 i < 5, группа

Zi+1/Zi есть прямое произведение следующего набора элементарных подгрупп порядка q:
αj1(u)Zi,. . . ,αjki

(u)Zi, где 1 6 j1 < . . . < jki 6 12 (однозначно определены для данного i)
и u ∈ GF (q). Для каждого i, 0 6 i < 5, естественным образом определим умножение про-
извольного элемента αj1(u1) . . . αjki

(uki)Zi ∈ Zi+1/Zi на произвольный элемент t ∈ GF (q),
полагая t(αj1(u1) . . . αjki

(uki)Zi) = αj1(tu1) . . . αjki
(tuki)Zi. С использованием коммутаторных

соотношений между α3(u), u ∈ GF (q), и αj(t), j = 1–12, t ∈ GF (q), и между α−3(u), u ∈ GF (q),
и αj(t), j = 1–12, t ∈ GF (q), легко проверяется, что такое умножение на элементы поля GF (q)
перестановочно с действием (сопряжением) на Zi+1/Zi групп S1 и S2, а следовательно, и
группы O2′(P2/U2). Таким образом, действие (сопряжением) группы O2′(P2/U2) ∼= SL2(q) на
векторном пространстве Zi+1/Zi над полем GF (q) (с базисом αj1(1)Zi, . . . , αjki

(1)Zi) являет-

ся линейным представлением группы O2′(P2/U2) ∼= SL2(q) над полем GF (q). Отождествляя
O2′(P2/U2) с SL2(q), мы будем далее говорить о Zi+1/Zi как о GF (q)SL2(q)-модуле.

В [18] доказано, что (в наших обозначениях) U2/Z4, Z3/Z2, Z1/1 — нетривиальные непри-
водимые GF (q)SL2(q)-модули и Z2/Z1 — одномерный (тривиальный) GF (q)SL2(q)-модуль.
Далее, Z4/Z3 — 4-мерный GF (q)SL2(q)-модуль. Хорошо известно (см., например, [19, теоре-
ма 2.2]), что нетривиальными неприводимыми GF (q)SL2(q)-модулями размерности < 4 явля-
ются лишь естественный GF (q)SL2(q)-модуль и дуальный к нему. Из коммутаторных соотно-
шений легко следует, что централизатор S1 в Z4/Z3 есть 〈α8(x) | x ∈ GF (q)〉Z3, а централиза-
тор S2 в Z4/Z3 есть 〈α2(x) | x ∈ GF (q)〉Z3. Поэтому, во-первых, у GF (q)SL2(q)-модуля Z4/Z3

отсутствуют одномерные GF (q)SL2(q)-подмодули и, во-вторых, двумерным GF (q)SL2(q)-
подмодулем GF (q)SL2(q)-модуля Z4/Z3 может быть лишь 〈α2(x), α8(y) | x, y ∈ GF (q)〉Z3.
Но [α3(u), α2(x)]Z3 = α5(u

2θx)α6(ux)α8(u
2θ+1x)Z3 не содержится в 〈α2(x), α8(y) | x, y ∈

GF (q)〉Z3 при ux 6= 0. Следовательно, у GF (q)SL2(q)-модуля Z4/Z3 отсутствуют двумерные
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GF (q)SL2(q)-подмодули. Итак, Z4/Z3 — неприводимый GF (q)O2′(P2/U2)-модуль. Наконец, до-
казательство теоремы 13.7.4 из [2] влечет наличие для произвольных u, t ∈ GF (q) в H такого
элемента h, что hα10(u)h

−1 = α10(ut
2−θ). Следовательно, Z2/Z1 — главный фактор группы P2.

Таким образом, U2 > Z4 > Z3 > Z2 > Z1 > 1 — один из фрагментов главных рядов
группы P2, включенных в U2.

Из приведенных в [13] всех нетривиальных коммутаторных соотношений между порожда-
ющими элементами αi(t) (i = 1, 2, 4–12, t ∈ GF (q)) группы U2 следует, что нижний и верхний
центральные ряды подгруппы U2 совпадают и имеют вид U2 > Z4 > Z3 > Z2 > Z1 > 1.
Поскольку группа P2 действует неприводимо на каждом факторе верхнего центрального ряда
группы U2, приведенный фрагмент U2 > Z4 > Z3 > Z2 > Z1 > 1 главных рядов группы P2,
включенный в U2, единствен.

Таким образом, доказана справедливость утверждения п. (3) теоремы 1 при k = 2.

Пусть G = F4(2
f ) и k = 2.

При доказательстве теоремы 1 из [20] указаны следующие два разных фрагмента главных
рядов группы P2, включенные в ее унипотентный радикал U2:

U2 > Z4 > Z3 > Z2 > Z1 > 1 и U2 > Z4 > Z3 > Z2 > Z0 > 1,

где U2 = 〈2, 5, 6, 8–24〉, Z4 = 〈6, 8, 10, 12, 13, 15〉Z3 , Z3 = 〈14, 20, 22〉Z2 , Z2 = Z1 × Z0, Z1 =
〈23, 24〉 и Z0 = 〈17, 19, 21〉, причем U2 > Z3 > Z1 > 1 — нижний центральный ряд в U2. Кроме
того, из коммутаторных соотношений из [20, с. 1336] получаются следующие используемые
далее равенства: [Z4, U2] = Z2, [Z4, Z3] = 1.

Построим верхний центральный ряд группы U2. С помощью коммутаторных соотношений
из [20, с. 1336] можно показать, что Z4/Z2 6 Z(U2/Z2) и Z2 6 Z(U2). Если Z4/Z2 < Z(U2/Z2),
то Z(U2/Z2) = U2/Z2, вопреки, например, тому, что [U2, U2] = Z3. Следовательно, Z4/Z2 =
Z(U2/Z2). Если Z2 < Z(U2), то при Z(U2)/Z2 ∩ Z3/Z2 6= 1 имеем Z3 6 Z(U2), что противоречит
[Z3, U2] = Z1, а при Z(U2)/Z2 ∩ Z3/Z2 = 1 с учетом Z(U2)/Z2 6 Z(U2/Z2) = Z4/Z2 имеем
Z4/Z2 = Z(U2)/Z2 × Z3/Z2, что влечет Z4 = Z(U2)Z3, а это приводит к противоречию Z2 =
[Z4, U2] = [Z(U2)Z3, U2] = Z1. Таким образом, U2 > Z4 > Z2 > 1 — верхний центральный ряд
группы U2.

В случае f = 1 определим следующим образом подгруппу

Z̃3 = 〈x6x14, x8x14, x10x20, x12x20, x13x22, x15x22〉Z2.

Взяв коммутаторы элементов x6x14, x8x14, x10x20, x12x20, x13x22, x15x22 с элементами x1, x3,
x4, x7, x−1, x−3, x−4, x−7, порождающими группу L2,

[x6x14, x1]Z2 = x8x14Z2, [x6x14, x4]Z2 = x10x20Z2, [x6x14, x7]Z2 = x13x22Z2,

[x8x14, x4]Z2 = x12x20Z2, [x8x14, x7]Z2 = x15x22Z2, [x8x14, x−1]Z2 = x6x14Z2,

[x10x20, x1]Z2 = x12x20Z2, [x10x20, x3]Z2 = x13x22Z2, [x10x20, x−4]Z2 = x6x14Z2,

[x12x20, x3]Z2 = x15x22Z2, [x12x20, x−1]Z2 = x10x20Z2, [x12x20, x−4]Z2 = x8x14Z2,

[x13x22, x1]Z2 = x15x22Z2, [x13x22, x−3]Z2 = x10x20Z2, [x13x22, x−7]Z2 = x6x14Z2,

[x15x22, x−1]Z2 = x13x22Z2, [x15x22, x−3]Z2 = x12x20Z2, [x15x22, x−7]Z2 = x8x14Z2

(2.1)

(тривиальные коммутаторы не указаны), убеждаемся, что Z̃3 — нормальная подгруппа груп-
пы P2, содержащаяся собственным образом Z4 и содержащая собственным образом Z2.

Мы покажем, что рядами U2 > Z4 > Z3 > Z2 > Z1 > 1 и U2 > Z4 > Z3 > Z2 > Z0 > 1, а при
f = 1 дополнительно еще рядами U2 > Z4 > Z̃3 > Z2 > Z1 > 1 и U2 > Z4 > Z̃3 > Z2 > Z0 > 1
исчерпываются фрагменты главных рядов группы P2, включенные в ее унипотентный ради-
кал U2. Для этого докажем, что каждая содержащаяся в U2 нормальная подгруппа группы P2

совпадает с членом какого-то из указанных фрагментов.
Предположим, что, напротив, имеется содержащаяся в U2 нормальная подгруппа Z груп-

пы P2, отличная от членов всех указанных фрагментов. Поскольку подгруппа Z неединична и
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нормальна в U2, ее пересечение с Z(U2) = Z2 нетривиально. С помощью коммутаторных соот-
ношений (см. [20, с. 1336]) можно показать, что подгруппа Z2 содержит ровно две минималь-
ные нормальные в P2 подгруппы Z1 и Z0. Поэтому возможны только три случая: Z ∩ Z2 = Z2,
Z ∩ Z2 = Z1 и Z ∩ Z2 = Z0.

Предположим, что Z ∩ Z2 = Z2. Тогда Z2 < Z и Z3 < ZZ3. Пусть ZZ3 6 Z4. Ввиду непри-
водимости действия группы P2 на Z4/Z3 получаем, что ZZ3 = Z4. Если Z/Z2 ∩ Z3/Z2 6= 1, то
в связи с неприводимостью действия группы P2 на Z3/Z2 имеем Z3/Z2 6 Z/Z2, и, следова-
тельно, Z3 6 Z, что влечет Z = Z4; противоречие с выбором Z. Пусть Z/Z2 ∩ Z3/Z2 = 1.
В силу того, что ZZ3 = Z4 и Z/Z2 ∩ Z3/Z2 = 1, для произвольного ненулевого элемен-
та d ∈ GF (2f ) и некоторых a, b, c ∈ GF (2f ) в фактор-группе Z/Z2 найдется элемент
вида x10(d)x15(d)x14(a)x20(b)x22(c)Z2. Для этого элемента из коммутаторных соотношений
(t1, t2 ∈ GF (2f )) [x4(t1), x10(t2)] = [x4(t1), x15(t2)] = [x4(t1), x20(t2)] = [x4(t1), x22(t2)] =
[x7(t1), x10(t2)] = [x7(t1), x15(t2)] = [x7(t1), x20(t2)] = [x7(t1), x22(t2)] = 1, [x4(t1), x14(t2)] =
x17(t1t2)x20(t

2
1t2), [x7(t1), x14(t2)] = x19(t1t2)x22(t

2
1t2), [x20(t1), x22(t2)] = 1 получаем равенство

[x10(d)x15(d)x14(a)x20(b)x22(c), x4(v)x7(v)]Z2 = x20(v
2a)x22(v

2a)Z2

для произвольного элемента v ∈ GF (2f ) и x4(v)x7(v) ∈ P2. Выбирая v 6= 0, заключаем отсю-
да, что при a 6= 0 элемент x20(v

2a)x22(v
2a)Z2 ∈ Z/Z2 ∩ Z3/Z2 отличен от 1; противоречие с

выбором Z. Следовательно, x10(d)x15(d)x20(b)x22(c)Z2 ∈ Z/Z2.
Для t1, t2 ∈ GF (2f ) коммутаторы [x−3(t1), x10(t2)], [x−3(t1), x12(t2)], [x−3(t1), x20(t2)],

[x1(t1), x15(t2)], [x1(t1), x20(t2)], [x1(t1), x22(t2)], [x12(t1), x15(t2)], [x15(t1), x20(t2)] и [x12(t1),
x20(t2)] равны 1. С учетом коммутаторных соотношений (t1, t2 ∈ GF (2f )) [x−3(t1), x15(t2)] =
x12(t1t2), [x1(t1), x10(t2)] = x12(t1t2)x20(t1t

2
2), [x−3(t1), x22(t2)] = x21(t1t2)x20(t

2
1t2) имеем поэто-

му равенство

[x10(d)x15(d)x20(b)x22(c), x1(v)x−3(v)]Z2 = x20(vd
2)x20(v

2c)Z2

для произвольного v ∈ GF (2f ) и x1(v)x−3(v) ∈ P2. За счет выбора элемента v элемент
x20(vd

2)x20(v
2c)Z2 ∈ Z/Z2 ∩ Z3/Z2 может быть сделан отличным от 1 при f > 1, а также

при f = 1 и c = 0. Следовательно, f = 1 и x10x15x20(b)x22Z2 ∈ Z/Z2. Если b = 0, то из
коммутаторного равенства [x10x15x22, x−1x3]Z2 = x22Z2, где x−1x3 ∈ L2, получаем, что эле-
мент x22Z2 ∈ Z/Z2 ∩ Z3/Z2 отличен от 1; противоречие с выбором Z. Таким образом, f = 1 и
x10x15x20x22Z2 ∈ Z/Z2.

Так как группа L2 порождается множеством {x1, x3, x4, x7, x−1, x−3, x−4, x−7}, из коммута-
торных соотношений

[x10x15x20x22, x1]Z2 = x12x20Z2, [x10x15x20x22, x3]Z2 = x13x22Z2,

[x10x15x20x22, x−1]Z2 = x13x22Z2, [x10x15x20x22, x−3]Z2 = x12x20Z2,

[x10x15x20x22, x−4]Z2 = x6x14Z2, [x10x15x20x22, x−7]Z2 = x8x14Z2

и соотношений (2.1) с учетом Z2 6 Z следует, что Z = Z̃3; противоречие с выбором Z.
Итак, Z4 < ZZ4. Ввиду неприводимости действия группы P2 на U2/Z4 получаем, что

ZZ4 = U2.
Поскольку [U2, U2] = Z3 и Z(U2/Z2) = Z4/Z2, имеем

Z3/Z2 = [ZZ4, ZZ4]/Z2 = [Z,Z]Z2/Z2,

что с учетом Z2 6 Z влечет Z3 6 Z.
Если Z/Z3 ∩ Z4/Z3 6= 1, то в связи с неприводимостью действия группы P2 на Z4/Z3 имеем

Z4/Z3 6 Z/Z3, и, следовательно, Z4 6 Z. Но тогда Z = ZZ4 = U2; противоречие с выбором Z.
Пусть Z/Z3 ∩ Z4/Z3 = 1. Для t1, t2 ∈ GF (2f ) коммутаторы [x3(t1), x9(t2)], [x3(t1), x11(t2)],

[x3(t1), x13(t2)], [x3(t1), x15(t2)], [x3(t1), x16(t2)], [x3(t1), x18(t2)], [x13(t1), x15(t2)], [x6(t1), x3(t2)],
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[x8(t1), x3(t2)] равны 1. В силу того, что ZZ4 = U2 и Z/Z3 ∩ Z4/Z3 = 1, для произвольного
ненулевого элемента d ∈ GF (2f ) и некоторых ai ∈ GF (2f ) (1 ≤ i ≤ 6) в фактор-группе Z/Z3

найдется элемент вида

x9(d)x11(d)x16(d)x18(d)x6(a1)x8(a2)x10(a3)x12(a4)x13(a5)x15(a6)Z3,

для которого с учетом указанных выше единичных коммутаторов и коммутаторных соотно-
шений (t1, t2 ∈ GF (2f ))

[x3(t1), x10(t2)] = x13(t1t2), [x3(t1), x12(t2)] = x15(t1t2), [x13(t1), x12(t2)] = x21(t1t2)

получаем равенство

[x9(d)x11(d)x16(d)x18(d)x6(a1)x8(a2)x10(a3)x12(a4)x13(a5)x15(a6), x3(v)]Z3

= x13(a3v)x15(a4v)Z3

(2.2)

для произвольного элемента v ∈ GF (2f ) и x3(v) ∈ P2. Выбирая v 6= 0, заключаем, что при
a3 6= 0 или a4 6= 0 элемент x13(a3v)x15(a4v)Z3 ∈ Z/Z3 ∩ Z4/Z3 отличен от 1, вопреки Z/Z3 ∩
Z4/Z3 = 1. Следовательно, x9(d)x11(d)x16(d)x18(d)x6(a1)x8(a2)x13(a5)x15(a6)Z3 ∈ Z/Z3. Для
любого v ∈ GF (2f ) с учетом коммутаторных соотношений (t1, t2 ∈ GF (2f ))

[x6(t1), x7(t2)] = x13(t1t2), [x8(t1), x7(t2)] = x15(t1t2), [x7(t1), x13(t2)] = [x7(t1), x15(t2)] = 1

имеем

[x9(d)x11(d)x16(d)x18(d)x6(a1)x8(a2)x13(a5)x15(a6), x7(v)]Z3

= (x6(a1)x8(a2)x13(a5)x15(a6))
−1[x9(d)x11(d)x16(d)x18(d), x7(v)]

× x6(a1)x8(a2)x13(a5)x15(a6)[x6(a1)x8(a2)x13(a5)x15(a6), x7(v)]Z3

= [x6(a1)x8(a2)x13(a5)x15(a6), x7(v)]Z3

= (x13(a5)x15(a6))
−1[x6(a1)x8(a2), x7(v)]x13(a5)x15(a6)[x13(a5)x15(a6), x7(v)]Z3

= (x13(a5)x15(a6))
−1x8(a2)[x6(a1), x7(v)]x8(a2)[x8(a2), x7(v)]

× x13(a5)x15(a6)x15(a6)[x13(a5), x7(v)]x15(a6)[x15(a6), x7(v)]Z3

= x13(a1v)x15(a2v)Z3

(2.3)

для произвольного v ∈ GF (2f ) и x7(v) ∈ P2. Если a1 6= 0 или a2 6= 0, то за счет выбора
элемента v элемент x13(a1v)x15(a2v)Z3 ∈ Z/Z3 ∩ Z4/Z3 может быть сделан отличным от 1,
вопреки Z/Z3 ∩ Z4/Z3 = 1. Следовательно, x9(d)x11(d)x16(d)x18(d)x13(a5)x15(a6)Z3 ∈ Z/Z3.

Из приводимых ниже коммутаторных соотношений (v ∈ GF (2f ))

[x9(d)x11(d)x16(d)x18(d)x13(a5)x15(a6), x4(v)]Z3 = x13(dv)x15(dv)x16(dv
2)x18(dv

2)Z3,

[x9(d)x11(d)x16(d)x18(d)x13(a5)x15(a6), x1(v)]Z3 = x11(dv)x15(a5v)x18(dv)Z3,

[x11(d)x15(a5)x18(d), x4(v)]Z3 = x15(dv)x18(dv
2)Z3,

[x11(d)x15(a5)x18(d), x−4(v)]Z3 = x11(dv
2)x15(dv)Z3,

[x13(d)x16(d), x−3(v)]Z3 = x10(dv)Z3, [x10(d), x1(v)]Z3 = x12(dv)Z3,

[x10(d), x3(v)]Z3 = x13(dv)Z3

(2.4)

следует, что подгруппа Z/Z3 группы U2/Z3 содержит более q6 элементов, вопреки |U2/Z3| =
q12, |Z4/Z3| = q6 и Z/Z3 ∩ Z4/Z3 = 1. Итак, Z ∩ Z2 6= Z2.

Предположим, что Z ∩ Z2 = Z1. Тогда Z1 < Z и Z2 < ZZ2. Пусть ZZ2 6 Z3. Ввиду непри-
водимости действия группы P2 на Z3/Z2 получаем, что ZZ2 = Z3. Если Z/Z1 ∩ Z2/Z1 6= 1,
то в связи с неприводимостью действия группы P2 на Z2/Z1 имеем Z2/Z1 6 Z/Z1, и, следо-
вательно, Z2 6 Z, вопреки Z ∩ Z2 = Z1. Пусть Z/Z1 ∩ Z2/Z1 = 1. Для произвольного нену-
левого элемента d ∈ GF (2f ) и некоторых a, b, c ∈ GF (2f ) в фактор-группе Z/Z1 найдется
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элемент вида x20(d)x22(d)x17(a)x19(b)x21(c)Z1, для которого из коммутаторных соотношений
(t1, t2 ∈ GF (2f ))

[x20(t1), x4(t2)] = [x21(t1), x4(t2)] = [x22(t1), x4(t2)] = [x17(t1), x4(t2] = 1,

[x19(t1), x4(t2)] = x21(t1t2)

получаем равенство

[x20(d)x22(d)x17(a)x19(b)x21(c), x4(v)]Z1 = x21(bv)Z1

для произвольного v ∈ GF (q) и x4(v) ∈ P2. Выбирая v 6= 0 заключаем отсюда, что при b 6= 0
элемент x21(bv)Z1 ∈ Z/Z1 ∩ Z2/Z1 отличен от 1, вопреки Z/Z1 ∩ Z2/Z1 = 1. Следовательно,
x20(d)x22(d)x17(a)x21(c)Z1 ∈ Z/Z1.

С учетом коммутаторных соотношений (t1, t2 ∈ GF (2f ))

[x20(t1), x7(t2)] = [x21(t1), x7(t2)] = [x22(t1), x7(t2)] = 1, [x17(t1), x7(t2)] = x21(t1t2)

получаем, что для произвольного v ∈ GF (2f ) имеет место равенство

[x20(d)x22(d)x17(a)x21(c), x7(v)]Z1 = x21(av)Z1.

Следовательно, для произвольного 0 6= v ∈ GF (2f ) и x7(v) ∈ L2 элемент x21(av)Z1 ∈ Z/Z1 ∩
Z2/Z1 = 1 отличен от 1 при a 6= 0. Поэтому x20(d)x22(d)x21(c)Z1 ∈ Z/Z1.

Из приводимых ниже коммутаторных соотношений (v ∈ GF (2f ))

[x20(d)x22(d)x21(c), x−3(1)]Z1 = x20(d)x21(d)Z1,

[x20(d)x21(d), x−7(v)]Z1 = x17(dv)Z1,

[x17(d), x3(v)]Z1 = x19(dv)Z1,

[x17(d), x7(v)]Z1 = x21(dv)Z1

следует, что подгруппа Z/Z1 группы Z3/Z1 содержит более q3 элементов, вопреки равенствам
|Z3/Z1| = q6, |Z2/Z1| = q3 и Z/Z1 ∩ Z2/Z1 = 1. Полученное противоречие влечет включе-
ние Z3 < ZZ3.

Пусть ZZ3 6 Z4. Ввиду неприводимости действия группы P2 на Z4/Z3 получаем, что
ZZ3 = Z4. Но тогда с учетом [Z4, U2] = Z2 и [Z3, U2] = Z1 имеем

Z2 = [Z4, U2] = [ZZ3, U2] 6 [Z,U2][Z3, U2] 6 ZZ1 = Z,

что противоречит Z ∩ Z2 = Z1.
Ввиду неприводимости действия группы P2 на U2/Z4 получаем, что ZZ4 = U2. Если

ZZ3/Z3 ∩ Z4/Z3 6= 1, то в связи с неприводимостью действия группы P2 на Z4/Z3 имеем
Z4/Z3 6 ZZ3/Z3, и, следовательно, Z4 6 ZZ3. Но тогда с учетом [Z4, U2] = Z2 и [Z3, U2] = Z1

имеем
Z2 = [Z4, U2] 6 [ZZ3, U2] = Z[Z3, U2] 6 ZZ1 = Z,

что противоречит Z ∩ Z2 = Z1. Пусть ZZ3/Z3 ∩ Z4/Z3 = 1. Для произвольного ненулевого
элемента d ∈ GF (2f ) и некоторых ai ∈ GF (2f ) для 1 ≤ i ≤ 6 в фактор-группе ZZ3/Z3

найдется элемент вида

x9(d)x11(d)x16(d)x18(d)x6(a1)x8(a2)x10(a3)x12(a4)x13(a5)x15(a6)Z3,

для которого выполняется коммутаторное соотношение (2.2) для произвольного элемента v ∈
GF (2f ) и x3(v) ∈ L2. Выбирая v 6= 0, заключаем отсюда, что элемент x13(a3v)x15(a4v)Z3 ∈
ZZ3/Z3 ∩ Z4/Z3 отличен от 1, если a3 6= 0 или a4 6= 0. Далее, рассматривая элемент

x9(d)x11(d)x16(d)x18(d)x6(a1)x8(a2)x13(a5)x15(a6)Z3 ∈ ZZ3/Z3
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и (2.3), заключаем, что

x9(d)x11(d)x16(d)x18(d)x13(a5)x15(a6)Z3 ∈ ZZ3/Z3,

после чего на основании соотношений (2.4) получаем, что подгруппа ZZ3/Z3 группы U2/Z3

содержит более q6 элементов, вопреки равенствам |U2/Z3| = q12, |Z4/Z3| = q6 и ZZ3/Z3 ∩
Z4/Z3 = 1. Таким образом, Z ∩ Z2 6= Z1.

Итак, Z ∩ Z2 = Z0. Поэтому Z0 < Z и Z2 < ZZ2. Пусть ZZ2 6 Z3. Ввиду неприводимости
действия группы P2 на Z3/Z2 получаем, что ZZ2 = Z3. Но тогда с учетом [Z3, U2] = Z1 и
[Z2, U2] = 1 имеем Z1 = [Z3, U2] = [ZZ2, U2] 6 Z, что противоречит Z ∩ Z2 = Z0.

Итак, Z3 < ZZ3. Пусть ZZ3 6 Z4. Ввиду неприводимости действия группы P2 на Z4/Z3

получаем, что ZZ3 = Z4. Если ZZ2/Z2 ∩ Z3/Z2 6= 1, то в связи с неприводимостью действия
группы P2 на Z3/Z2 имеем Z3/Z2 6 ZZ2/Z2, и, следовательно, Z3 6 ZZ2. Но тогда с учетом
[Z3, U2] = Z1 и [Z2, U2] = 1 получаем

Z1 = [Z3, U2] = [ZZ2, U2] 6 Z,

что противоречит Z ∩ Z2 = Z0. Предположим, что ZZ2/Z2 ∩ Z3/Z2 = 1. Тогда, рассуждая так
же, как выше при рассмотрении случая, когда Z ∩ Z2 = Z2, ZZ3 = Z4 и ZZ2/Z2 ∩ Z3/Z2 = 1,
получаем, что f = 1 и ZZ2 = Z̃3. Но тогда x13x22x ∈ Z для некоторого x ∈ Z2, что с учетом
[Z2, U2] = 1 и [x13x22, x2] = x23 влечет x23 ∈ Z, вопреки x23 ∈ Z2 \ Z0 и Z ∩ Z2 = Z0. Таким
образом, Z4 < ZZ4.

Ввиду неприводимости действия группы P2 на U2/Z4 получаем, что ZZ4 = U2. Но тогда с
учетом [Z3, U2] = Z1 и [Z3, Z4] = 1 имеем

Z1 = [Z3, U2] = [Z3, ZZ4] = [Z3, Z][Z3, Z4] 6 Z,

что противоречит Z ∩ Z2 = Z0.

Таким образом, доказана справедливость утверждения п. (4) теоремы 1 при k = 2. �

3. Доказательство теоремы 2

Напомним, что содержащаяся в P1 ∩ G и в P2 ∩ G силовская 2-подгруппа B0 группы G
порождается элементами α1α5, α4α5, α6α5 и αi, где i = 3, 7–12, причем, как показано в [15], все
нетривиальные коммутаторные соотношения между указанными порождающими группы B0

исчерпываются следующими:

[α1α5, α3] = α4α5α7α8α9α12, [α1α5, α4α5] = α6α5α7α11α12, [α1α5, α6α5] = α7α10,

[α1α5, α7] = α11, [α1α5, α9] = α10α11α12, [α1α5, α10] = α11, [α1α5, α8] = α9α11α12,

[α3, α4α5] = α8, [α3, α6α5] = α9α12, [α3, α7] = α9α10, [α3, α1α5] = α4α5α7α10,

[α3, α11] = α12, [α4α5, α6α5] = α9α10, [α4α5, α7] = α10α12, [α8, α7] = α12,

[α4α5, α10] = α12, [α4α5, α1α5] = α6α5α7α10α11, [α6α5, α7] = α11, [α6α5, α9] = α12.

(3.1)

Как было объяснено перед формулировкой теоремы 2, в доказательстве нуждается лишь
случай k = 2 этой теоремы.

Пусть M = P2 ∩ G. Согласно работе [6] имеем M/O2(M) ∼= Sym3. При этом α−3 ∈ M
(см. [5, 4.3]) и образы элементов α−3, α3 в M/O2(M) — различные инволюции, а образ элемен-
та α−3α3 в M/O2(M), следовательно, имеет порядок 3. Указанный в [17] фрагмент главных
рядов группы P2, включенный в O2(P2), имеет вид

O2(P2) > Z6 > Z5 > Z4 > Z3 > Z2 > Z1 > 1,
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где O2(P2) = 〈αi | i = 1, 2, 4–12〉, Z6 = 〈αi | i = 2, 5–12}〉, Z5 = 〈α6α5, αi | i = 2, 7–12〉, Z4 =
〈α6α5, αi | i = 7, 9–12〉, Z3 = 〈αi | i = 7, 9–12}〉, Z2 = 〈αi | i = 10–12}〉, Z1 = 〈αi | i = 11, 12〉.
Поскольку Z6 ∩G = Z5, пересекая этот ряд с G, получим фрагмент

O2(M) > Z5 > Z4 > Z3 > Z2 > Z1 > 1

главных рядов группы M , включенный в O2(M), и O2(M) = 〈α1α5, α4α5, α6α5, αi | i = 7–12〉.
Построим нижний центральный ряд группы O2(M). Коммутаторные соотношения (3.1),

не содержащие α3, влекут [O2(M), O2(M)] = Z4. Из приводимых далее (всех) нетривиальных
коммутаторных соотношений между указанными порождающими групп O2(M) и Z4

[α1α5, α6α5] = α7α10, [α1α5, α7] = α11, [α1α5, α9] = α10α11α12, [α1α5, α10] = α11,

[α1α5, α8] = α9α11α12, [α4α5, α6α5] = α9α10, [α4α5, α7] = α10α12, [α8, α7] = α12,

[α4α5, α10] = α12, [α6α5, α7] = α11, [α6α5, α9] = α12

следует, что [Z4, O2(M)] = 〈α7, α9, α10, α11, α12〉 = Z3. Из приводимых далее (всех) нетриви-
альных коммутаторных соотношений между указанными порождающими групп O2(M) и Z3

[α1α5, α7] = α11, [α1α5, α9] = α10α11α12, [α1α5, α10] = α11, [α4α5, α7] = α10α12,

[α8, α7] = α12, [α4α5, α10] = α12, [α6α5, α7] = α11, [α6α5, α9] = α12

следует, что [Z3, O2(M)] = Z2.
Из коммутаторных соотношений [α1α5, α10] = α11 и [α4α5, α10] = α12 следует, что

[Z2, O2(M)] = Z1. Наконец, из отсутствия нетривиальных коммутаторных соотношений меж-
ду указанными порождающими групп O2(M) и Z1 следует, что [Z1, O2(M)] = 1 (и, в част-
ности, Z1 6 Z(O2(M))). Таким образом, нижний центральный ряд группы O2(M) имеет вид
O2(M) > Z4 > Z3 > Z2 > Z1 > 1.

Построим верхний центральный ряд группы O2(M). Коммутаторные соотношения из (3.1)
между указанными порождающими групп O2(M) и Z5 влекут Z5/Z3 6 Z(U2/Z3), что с уче-
том [O2(M), O2(M)] = Z4 дает Z(O2(M)/Z3) = Z5/Z3 и Z(O2(M)/Z5) = O2(M)/Z5. Да-
лее, Z3/Z2 6 Z(O2(M)/Z2). Если Z3/Z2 < Z(O2(M)/Z2), то из соотношений (3.1) следу-
ет, что Z(O2(M)/Z2) 66 Z5/Z2, а это противоречит Z(O2(M)/Z3) = Z5/Z3. Таким обра-
зом, Z(O2(M)/Z2) = Z3/Z2. Далее, Z2/Z1 6 Z(O2(M)/Z1). Предположим, что Z2/Z1 <
Z(O2(M)/Z1). Пусть Z — полный прообраз Z(O2(M)/Z1) при естественном гомоморфиз-
ме O2(M) → O2(M)/Z1. Тогда Z/Z2 6 Z(O2(M)/Z2) = Z3/Z2, что влечет Z = Z3. Но
[Z,O2(M)] 6 Z1, а [Z3, O2(M)] = Z2. Полученное противоречие означает, что Z(O2(M)/Z1) =
Z2/Z1. Наконец, как было показано выше, Z1 6 Z(O2(M)). Если Z1 < Z(O2(M)), то
Z2 6 Z(O2(M)), что противоречит [Z2, O2(M)] = Z1. Таким образом, верхний центральный
ряд группы O2(M) имеет вид O2(M) > Z5 > Z3 > Z2 > Z1 > 1.

Фактор-группа Z5/Z3 есть элементарная абелева группа порядка 8, централизуе-
мая O2(M), на которой нетривиально действует элемент α−3α3O2(M) порядка 3 груп-
пы M/O2(M) ∼= Sym3. Поэтому Z5/Z3 есть прямое произведение M -допустимых под-
группы CZ5/Z3

(α−3α3O2(M)) порядка 2, совпадающей, очевидно, с Z4/Z3, и подгруппы
[Z5/Z3, 〈α−3α3O2(M)〉], совпадающей, как это следует из коммутаторных соотношений (3.1)
и коммутаторных соотношений для α−3, приведенных в начале доказательства теоремы 1,
с Z̃4 = 〈α2α8Z3, α6α5α8Z3〉. Таким образом, имеем два ряда подгрупп:

O2(M) > Z5 > Z4 > Z3 > Z2 > Z1 > 1 и O2(M) > Z5 > Z̃4 > Z3 > Z2 > Z1 > 1, (3.2)

являющихся фрагментами главных рядов группы M , включенными в O2(M).
Покажем, что рядами (3.2) исчерпываются фрагменты главных рядов группы M , включен-

ные в O2(M). Для этого докажем, что каждая содержащаяся в O2(M) нормальная подгруппа
группы M совпадает с членом какого-то из указанных фрагментов.
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Предположим, что, напротив, имеется содержащаяся в O2(M) нормальная подгруппа Z
группы M , отличная от всех членов указанных фрагментов.

Поскольку нетривиальная подгруппа Z нормальна в O2(M), ее пересечение с
Z(O2(M)) = Z1 нетривиально. Подгруппа Z1 является минимальной нормальной в M под-
группой, поэтому Z ∩ Z1 = Z1 и, следовательно, Z1 < Z.

Так как Z/Z1 — нетривиальная нормальная подгруппа группы O2(M)/Z1, фактор-груп-
па Z/Z1 имеет нетривиальное пересечение с Z(O2(M)/Z1) = Z2/Z1. Но |Z2/Z1| = 2, следова-
тельно, Z2 < Z.

Так как Z/Z2 — нетривиальная нормальная подгруппа группы O2(M)/Z2, фактор-груп-
па Z/Z2 имеет нетривиальное пересечение с Z(O2(M)/Z2) = Z3/Z1. Ввиду неприводимости
действия группы M на Z3/Z2 это влечет Z3 < Z.

Поскольку |Z4/Z3| = 2, имеем Z4 < ZZ4.
Пусть ZZ4 6 Z5. Ввиду неприводимости действия группы M на Z5/Z4 получаем, что

ZZ4 = Z5. Если Z4 6 Z, то Z = Z5; противоречие с выбором Z. Поэтому Z/Z3 ∩ Z4/Z3 = 1,
что, как было показано выше, влечет Z = Z̃4, а это противоречит выбору Z.

Таким образом, Z5 < ZZ5. Ввиду неприводимости действия группы M на O2(M)/Z5

получаем, что ZZ5 = O2(M). Поскольку согласно [15, с. 476] имеем (α1α5)
2 = α2α12 и

(α4α5)
2 = α8α9α12, группа O2(M)/Z4 есть прямое произведение двух циклических групп по-

рядка 4, причем Z5/Z4 — ее нижний слой. В частности, ZZ4/Z4 ∩ Z5/Z4 6= 1. Ввиду неприводи-
мости действия группы M на Z5/Z4 это влечет Z5/Z4 6 ZZ4/Z4, и, следовательно, Z5 6 ZZ4,
что дает O2(M) = ZZ5 = ZZ4. Но тогда группа O2(M)/Z изоморфна группе Z4/(Z4 ∩ Z)
порядка, не превосходящего 2, и потому [O2(M), O2(M)] = Z4 < Z, что влечет O2(M) = Z;
противоречие с выбором Z.

Таким образом, для группы P2 ∩G утверждение теоремы 2 доказано. �
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1. Bourbaki N. Groupes et algèbres de Lie. Chap. IV–VI. Berlin, Heidelberg, Springer, 1968, 282 p.
https://doi.org/10.1007/978-3-540-34491-9. Translated to Russian under the title Gruppy i algebry Li.
Gl. IV–VI. Moscow, Mir Publ., 1972, 334 p.

2. Carter R.W. Simple groups of Lie type. London, John Wiley and Sons, 1972, 331 p. ISBN: 0471137359 .

3. Azad H., Barry M., Seitz G. On the structure of parabolic subgroups. Comm. Algebra, 1990, vol. 18,
no. 2, pp. 551–562. https://doi.org/10.1080/00927879008823931

4. Gorenstein D., Lyons R., Solomon R. The classification of the finite simple groups. Number 3, Part I.
Providence, RI Amer. Math. Soc., 1998, 420 p. ISBN: 0-8218-0391-3 .

5. Tits J. Algebraic and abstract simple groups. Ann. of Math., 1964, vol. 80, pp. 313–329.
https://doi.org/10.2307/1970394

6. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. Atlas of finite groups. Oxford,
Clarendon Press, 1985, 252 p. ISBN: 0-19-853199-0 .

https://doi.org/10.21538/0134-4889-2022-28-2-297-299
https://doi.org/10.21538/0134-4889-2019-25-4-99-106
https://doi.org/10.17377/smzh.2017.58.612
https://doi.org/10.1007/978-3-540-34491-9
https://doi.org/10.1080/00927879008823931
https://doi.org/10.2307/1970394


О главных рядах параболических подгрупп 17

7. Gorenstein D. Finite groups. NY, Harper and Row, 1968, 527 p.

8. Seitz G. Small rank permutation representations of finite Chevalley groups J. Algebra 1974, vol. 28,
no. 3, pp. 508–517. https://doi.org/10.1016/0021-8693(74)90057-X

9. Ree R. A family of simple groups associated with simple Lie algebra type F4. Amer. J. Math., 1961,
vol. 83, no. 3, pp. 401–420. https://doi.org/10.2307/2372886

10. Shinoda K. A characterization of odd order extensions of the Ree groups 2F4(q). J. Fac. Sci. Univ.,
1975. vol. 22, pp. 79–102.

11. Suzuki M. On a class of doubly transitive groups. Ann. Math., 1962, vol. 75, no. 1, pp. 105–145.
https://doi.org/10.2307/1970423

12. Ward H.N. On Ree’s series of simple groups. Trans. Amer. Math. Soc., 1966, vol. 121, no. 1, pp. 62–89.
https://doi.org/10.1090/S0002-9947-1966-0197587-8

13. Parrott D. A characterization of the Ree groups 2F4(q). J. of Algebra, 1973, vol. 27, no. 2, pp. 341–357.

14. Fong P., Seitz G. Groups with a (B,N)-pair of rank 2. II // Invent. Math. 1974. Vol. 24, no. 3. P. 191–239.

15. Assa S. A characterization of 2F4(2)
′ and the Rudvalis group. J. Algebra, 1976, vol 41, no. 2, pp. 473–495.

https://doi.org/10.1016/0021-8693(76)90194-0

16. Parrott D. A characterization of the Tits’ simple group. Canad. J. Math., 1972, vol. 24, no. 4, pp. 672–685.

17. Korableva V.V. Letter to the editor. Trudy Inst. Mat. Mekh. UrO RAN, 2022, vol. 28, no. 2, pp. 297–299
(in Russian). https://doi.org/10.21538/0134-4889-2022-28-2-297-299

18. Korableva V.V. On the chief factors of parabolic maximal subgroups of the group 2F4(2
2n+1). Proc.

Steklov Inst. Math., 2021, vol. 313, suppl. 1, pp. S1–S7. https://doi.org/10.1134/S0081543821030147

19. Liebeck M.W. The affine permutation groups of rank three. Proc. London Math. Soc. (3), 1987. vol. 54,
no. 3, pp. 477–516.

20. Korableva V.V. On the chief factors of parabolic maximal subgroups of special finite simple groups of
exceptional Lie type. Sib. Math. J., 2017, vol. 58, no. 6, pp. 1034–1041.
https://doi.org/10.1134/S003744661706012X

Received May 14, 2025
Revised October 10, 2025

Accepted October 13, 2025
Published online December 4, 2025

Funding Agency: The work was performed as part of research conducted in the Ural Mathematical
Center with the financial support of the Ministry of Science and Higher Education of the Russian
Federation (Agreement number 075-02-2025-1549).

Anatoly Semenovich Kondrat’ev, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics
and Mechanics of the Ural Branch of the Russian Academy of Sciences; Ural Mathematical Center,
Yekaterinburg, 620077 Russia, е-mail: a.s.kondratiev@imm.uran.ru .

Vera Vladimirovna Korableva, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and
Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620077 Russia;
Prof., Chelyabinsk State University, Chelyabinsk, 454001 Russia, е-mail: vvkora@gmail.com .

Vladimir Ivanovich Trofimov, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and
Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620077 Russia;
Ural Mathematical Center; Prof., Ural Federal University, Yekaterinburg, 620000 Russia,
е-mail: trofimov@imm.uran.ru .

Cite this article as: A. S.Kondrat’ev, V.V.Korableva, V. I. Trofimov. On chief series of parabolic
maximal subgroups of finite simple groups of exceptional Lie type. Trudy Instituta Matematiki i

Mekhaniki URO RAN, 2026. https://doi.org/10.21538/0134-4889-2026-32-1-fon-02

https://doi.org/10.1016/0021-8693(74)90057-X
https://doi.org/10.2307/2372886
https://doi.org/10.2307/1970423
https://doi.org/10.1090/S0002-9947-1966-0197587-8
https://doi.org/10.1016/0021-8693(76)90194-0
https://doi.org/10.21538/0134-4889-2022-28-2-297-299
https://doi.org/10.1134/S0081543821030147
https://doi.org/10.1134/S003744661706012X

	Введение
	1  Обозначения, терминология и формулировки теорем
	2  Доказательство теоремы 1
	3  Доказательство теоремы 2
	Список литературы
	References

