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VALUE FUNCTION OF THE OPTIMAL CONTROL PROBLEM

FOR NONLOCAL BALANCE EQUATION1

Yu. Averboukh

This paper studies an optimal control problem for a system governed by a nonlocal balance equation, which

models the evolution of a particle distribution. In the examined model, particles move according to a vector

field and may disappear. The phase space for this problem is the space of non-negative measures. We prove the

existence of an optimal relaxed control, establish a dynamic programming principle, and demonstrate that the

value function is a viscosity solution of the corresponding Hamilton–Jacobi equation on the space of non-negative

measures.
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1. Introduction

This paper considers the following control problem on the space of non-negative measures:

minimize G(mT ) +

T
∫

s

L(t,mt, u(t))dt (1.1)

subject to the nonlocal balance equation

∂tmt + div(f(t, x,mt, u(t))mt) = g(t, x,m(t), u(t))mt , ms = µ, u(t) ∈ U. (1.2)

Here, t ∈ [0, T ] is the time variable, mt is a measure on R
d, and u(t) is an external control. We will

consider only the case of non-positive function g.

Nonlocal balance equation (1.2) has a natural interpretation. The measure mt describes the
distribution of particles in an infinite system, where each particle moves according to the vector
field f , which depends on time, the current distribution, and the external control u(t). Additionally,
each particle can disappear with a probability rate −g, which also depends on time, the particle’s

1The research was funded by the Russian Science Foundation (project no. 24-21-00373,
https://rscf.ru/project/24-21-00373/).
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state, the current distribution, and the control u(t). Thus, the problem involves optimizing the
distribution of particles.

Note that, if g ≡ 0, the nonlocal balance equation reduces to the nonlocal continuity equation.
A key feature in this case is the conservation of particles. The control problem for the nonlocal
continuity equation is well studied; we refer to [5;8–11] and references therein for recent developments.

We now provide a brief survey of the literature on the nonlocal balance equation, where usually
the case of a general function g is examined. The positive values of the function g refer to the
appearance of particles. First, we mention papers [1; 4; 7; 12; 13; 15; 19; 23; 28], which discuss various
models of crowd and opinion dynamics that lead to balance equations. Since the phase space for
the nonlocal balance equation is the space of non-negative measures, its mathematical analysis
requires an appropriate metric. A common approach is to generalize the celebrated Wasserstein
distance [29]. A concept based on the Kantorovich-Rubinstein duality was used in [25]. An extension
of the Benamou-Brenier formula was considered in [17]. Our approach relies on one proposed by
Piccoli and Rossi [20–24] where the metric on the space of measures involves the idea of alignment.
In [2], this metric was interpreted using the Wasserstein metric on the space of probability measures
over an augmented space. The properties of the nonlocal balance equation have been studied in
[2; 20–25], where existence and uniqueness results were proved. Additionally, the solution can be
represented via a distribution of weighted curves; this superposition principle is derived in [2; 18].

The control problem for the balance equation was recently studied in [16;26], where the authors
derived the Pontryagin maximum principle for the linear case (i.e., when f and g do not depend on
the measure variable).

As mentioned above, this paper explores the control problem for the nonlinear nonlocal balance
equation. The assumption that g is non-positive means that the term only acts as a sink for particles.
The main results are as follows:

• the existence of an optimal control;

• the dynamic programming principle for the value function of the examined problem;

• an infinitesimal necessary condition on the value function in the form of viscosity inequalities,
which can be regarded as a viscosity solution to a Hamilton–Jacobi equation in the space of
non-negative measures.

As a byproduct of the last result, we introduce some concepts of nonsmooth analysis in the space
of non-negative measures.

The rest of the paper is organized as follows. Section 2 contains general notation and various
concepts for extending the Wasserstein metric to the space of non-negative measures. In Section 3,
we discuss the properties of solutions to the nonlocal balance equation (1.2) and prove the existence
of an optimal control for problem (1.1), (1.2). The dynamic programming principle is derived in
Section 4. Finally, Section 5 provides the fact that the value function is a viscosity solution of a
Hamilton–Jacobi equation corresponding to control problem (1.1), (1.2).

2. Preliminaries

2.1. General notation

• If X1, . . . ,Xn are some sets, i1, . . . , ik are indices from {1, . . . , n}, then pi1,...,ik : X1 × . . . ×
Xn → Xi1 × . . . × Xik is the operator assigning to (x1, . . . , xn) the tuple (xi1 , . . . , xik).
Furthermore, Id denotes the identity mapping.

• If X is a set, Y ⊂ X, then 1Y is a characteristic function for the set Y .

• If (Ω,F), (Ω′,F ′) are measurable spaces, m is a measure on F , whereas h : Ω → Ω′ is a F/F ′

mapping, then h♯m stands for the push-forward measure defined by the rule: for each Υ ∈ F ′,

(h♯m)(Υ) , m(h−1(Υ)).
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• If (X, ρX ) is a Polish space, then Cb(X) denotes the space of all bounded continuous functions.
We consider on Cb(X) the standard sup-norm.

• The Polish space (X, ρX ) is always endowed with the Borel σ-algebra which is denoted by
B(X). The space of non-negative finite measures on X is denoted by M(X). Recall that
m ∈ M(X) is a probability provided m(X) = 1. The space of probabilities on X is denoted
by P(X). If m ∈ M(X), then supp(m) denotes its support, i.e., the minimal closed set Υ s.t.
m(X \ Υ) = 0. We consider on M(X) the topology of narrow convergence, i.e., a sequence
{mn}

∞
n=1 ⊂ M(X) converges narrowly to m ∈ M(X) provided that, for each φ ∈ Cb(X),

∫

X

φ(x)mn(dx) →

∫

X

φ(x)m(dx) as n→ ∞.

Notice that P(X) is closed w.r.t. the topology of narrow convergence. In Section 2.2, we
introduce a different approach to the topology on M(X) based on an extension of the
Wasserstein metric. Notice that, if X is compact, then, due to the Prokhorov theorem, P(X)
is also compact.

• In what follows, we consider on on each time interval [s, r] the Lebesgue σ-algebra, i.e., we
enlarge the Borel σ-algebra on [s, r] by adding all null sets. Each function measurable h
defined on a time interval [s, r] is assumed to be Lebesgue measurable.

• R
d denotes the space of column-vectors, whilst R

d,∗ is the space of row-vectors. We denote
the standard Euclidean norm on R

d by | · |. The same symbol is used for the norm on R
d,∗. If

R > 0, then BR denotes the closed ball in Rd of the radius R centered at the origin.

• If φ : Rd → R, x ∈ R
d, then ∇φ(x) denotes the derivative of φ at x. We assume that ∇φ(x)

is a row-vector.

• The space of all continuously differentiable functions on R
d which are bounded with its

derivative is denoted by C1
b (R

d). Furthermore, C1
c (R

d) stands for the set of all functions
from C1

b (R
d) with a compact support.

2.2. Wasserstein distance and its extension

The aim of this section is to recall the celebrated Wasserstein distance on the space of probability
measures and its extensions to the space of non-negative measures. The standard Wasserstein metric
is defined on the space of probabilities measures with the finite p-th moment. In what follows, if
(X, ρX ) is a Polish space, then we denote by Pp(X) the set of probabilities m ∈ P(X) s.t., for some
(equivalently, every) x∗ ∈ X,

∫

X

ρpX(x, x∗)m(dx) <∞.

The Wasserstein metric on X is defined by the rule: if m1,m2 ∈ Pp(X),

Wp(m1,m2) ,

[

inf
π∈Π(m1,m2)

∫

X×X

ρpX(x1, x2)π(d(x1, x2))

]1/p

.

Here Π(m1,m2) denotes the set of measures π on X × X such that pi ♯π = mi. It is well known
that the space Pp(X) endowed with the metric Wp is Polish.

Now, let m1,m2 ∈ M(X). We write m1 ≦ m2 provided, for each Borel set Υ ⊂ X, m1(Υ) ≤
m2(Υ). Furthermore, ‖m‖ denotes the total mass of a measure m. Notice that, if m1,m2 ∈ M(X)
are such that ‖m1‖ = ‖m2‖, then the set Π(m1,m2) is well-defined. Now, we introduce the PRW-
metric (Piccoli–Rossi–Wasserstein metric also known as generalized Wassesrstein metric) Wp,b for
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the parameters p ≥ 1 and b > 0 letting

(

Wp,b(m1,m2)
)p

, inf

{

bp‖m1 − m̂1‖+ bp‖m2 − m̂2‖+

∫

X×X

ρpX(x1, x2)π(d(x1, x2)) :

m̂1 ≦ m1, m̂2 ≦ m2, ‖m̂1‖ = ‖m̂2‖, π ∈ Π(m̂1, m̂2)

}

.

There is an equivalent description of this metric [2]. It relies on the augmented space X∪{⋆}, where
⋆ is an external point. We assume that the distance on X ∪ {⋆} is defined by the rule:

ρ⋆(x1, x2) ,







ρX(x1, x2), x1, x2 ∈ X,
b, x1 ∈ X,x2 = ⋆ or x1 = ⋆, x2 ∈ X,
0, x1 = x2 = ⋆.

Furthermore, if R ≥ ‖m‖, then (m⊲R) is a probability on X∪{⋆} defined by the rule: for each Borel
Υ ∈ X ∪ {⋆},

(m⊲R)(Υ) , R−1
(

m(Υ ∩X) + (R− ‖m‖)1Υ(⋆)
)

.

It is proved [2, Proposition 1] that, for m1,m2 ∈ M(X), R ≥ ‖m1‖ ∨ ‖m2‖,

Wp,b(m1,m2) , R1/pWp((m1⊲R), (m2⊲R)).

Below we consider only the case when p = 1. Additionally, let M1(R
d) denote the space of all

non-negative measures m ∈ M(Rd) s.t.

∫

Rd

|x|m(dx) <∞. Furthermore,

M
ρ
1 (R

d) , {m ∈ M1(R
d) : ‖m‖ ≤ ρ}.

Certainly, Mρ
1 (R

d) inherits the PRW-metric. However, it is convenient to consider a metric relying
on projections of probability measures on R

d × [0, ρ]. In what follows, an element of Rd × [0, ρ] is
regarded as a pair (x,w), where x ∈ R

d, w ∈ R. We interpret a pair (x,w) as a ‘massed particle’;
where w represents a mass. If ν ∈ P1(R

d × [0, ρ]), then we let ⌊ν⌋ to be a measure on R
d defined

by the rule: for each φ ∈ Cb(R
d),
∫

Rd

φ(x)⌊ν⌋(dx) ,

∫

Rd+1

wφ(y)ν(d(y,w)).

Notice that, given m ∈ Mρ
1(R

d), the probability ν , (Id, ‖m‖)♯(‖m‖−1m) is s.t. ⌊ν⌋ = m and
lies in P1(R

d × [0, ρ]) for sufficiently large ρ.

Definition 1. The first induced Wasserstein metric on M
ρ
1 (R

d) is defined by the rule: for
m1,m2 ∈ M

ρ
1 (R

d),

W1,ρ(m1,m2) , inf
{

W1(ν1, ν2) : νi ∈ P1(R
d × [0, ρ]), ⌊νi⌋ = mi, i = 1, 2

}

.

The following statement can be proved in the same way as [2, Proposition 4].

Proposition 1. If ν1, ν2 ∈ P1(R
d × [0, ρ]), then

W1,b(⌊ν1⌋, ⌊ν2⌋) ≤ C0W1(ν1, ν2),

where C0 , ρ ∨ b. In particular, if m1,m2 ∈ M
ρ
1 (R

d), then

W1,b(m1,m2) ≤ C0W1,ρ(m1,m2). (2.3)

Finally, given R, ρ > 0, we denote by Mρ(BR) the set of all measures m ∈ M(Rd) s.t. m is
concentrated on BR and ‖m‖ ≤ ρ. Notice that Mρ(BR) ⊂ M

ρ
1 (R

d). Thus, Mρ(Rd) inherits the
metric W1,ρ. Moreover, if m ∈ Mρ(BR), whereas ν ∈ P1(R

d × [0, ρ]) is s.t. ⌊ν⌋ = m, then ν is
supported on BR × [0, ρ].
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3. Balance equation

In what follows, we fix ρ > 0 and consider the functions

• f : [0, T ]× R
d+1 ×M

ρ
1 (R

d)× U → R
d,

• g : [0, T ] ×R
d+1 ×M

ρ
1 (R

d)× U → R,

• L : [0, T ]×M
ρ
1 (R

d)× U → R,

• G : Mρ
1 → R.

We assume the following:

(H1) the set U is a metric compact;

(H2) the function f is bounded by a constant C0
f ;

(H3) there exists R > 0 s.t., for each t ∈ [0, T ], |x| ≥ R, m ∈ M
ρ
1 (R

d), u ∈ U , f(t, x,m, u) = 0;

(H4) the function g takes values in [−C0
g , 0];

(H5) the functions f and g are uniformly continuous w.r.t. t and u;

(H6) the functions f and g are Lipschitz continuous w.r.t. x and m, i.e., there exist constants C1
f

and C1
g s.t., for every x1, x2 ∈ R

d, m1,m2 ∈ M
ρ
1 (R

d),

|f(t, x1,m1, u)− f(t, x2,m2, u)| ≤ C1
f (|x1 − x2|+W1,ρ(m1,m2)),

|g(t, x1,m1, u)− g(t, x2,m2, u)| ≤ C1
g (|x1 − x2|+W1,ρ(m1,m2));

(H7) the function G is continuous.

Remark 1. Certainly, one can consider that the functions f , g, L and G are defined on the
whole space M(Rd) and the function f , g, L are considered w.r.t. the measure variable in the
metric W1,b, while the function G is continuous in this metric. From Proposition 1, the hypotheses
of the paper will follow for each ρ > 0 and revised Lipschitz constants.

Remark 2. The assumption that the functions f , g, L are Lipschitz continuous w.r.t. the
measure variable when the corresponding space is endowed with the metric W1,ρ looks quite natural.

In particular, the functions Mρ
1 (R

d) ∋ m 7→ F
(

∫

Rd

ψ(x)m(dx)
)

are Lipschitz continuous, whenever

F and ψ are Lipschitz continuous. This directly follows from the definitions of the operation ⌊·⌋ and
the metric W1,ρ.

We follow the standard approach of control theory and consider a relaxation of problem (1.1), (1.2).
To this end, for s, r ∈ [0, T ], s < r, we denote by Us,r the set of all finite measures ξ on [s, r] × U
s.t. p1 ♯ξ is equal to the Lebesgue measure. Each element of Us,r is called a relaxed control. On Us,r,
we consider the topology of the narrow convergence. The disintegration theorem [14, III-70] states
that, given a relaxed control ξ there exists, a weakly measurable function [s, r] ∋ t 7→ ξ(·|t) ∈ P(U)
satisfying the following condition: for each φ ∈ C([s, r]× U),

∫

[s,r]×U

φ(t, u)ξ(d(t, u)) =

r
∫

s

φ(t, u)ξ(du|t)dt. (3.1)

Recall that a function β : [s, r] → P(U) is called weakly measurable provided that the mapping
∫

U
φ(u)β(t, du) is measurable for every φ ∈ C(U). Conversely, given a weakly measurable function
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[s, r] ∋ t 7→ ξ(·|t) ∈ P(U), one can define the measure ξ on [s, r]×U by rule (3.1). Thus, we identify
a relaxed control ξ with its disintegration.

Moreover, if u(·) : [s, r] → U is measurable, then one can define the relaxed control ξu(·) by the

rule ξu(·)(·|t) , δu(t)(·). Hereinafter, δz stands for the Dirac measure concentrated at z. Notice that,
for each φ ∈ C([s, r]× U),

r
∫

s

∫

U

φ(t, u)ξu(·)(du|t)dt =

r
∫

s

φ(t, u(t))dt.

Using the relaxation, one can rewrite nonlocal balance equation (1.2) as follows

∂tmt + div

(
∫

U

f(t, x,mt, u)ξ(du|t) ·mt

)

=

∫

U

g(t, x,mt, u)ξ(du|t) ·mt. (3.2)

Definition 2. Let s, r ∈ [0, T ], s < r. We say that a function [s, r] ∋ t 7→ mt ∈ M(Rd) is a
solution of (3.2) provided, for each φ ∈ C1

c ((s, r)× R
d),

r
∫

s

∫

Rd

(

∂tφ(t, x) +∇φ(t, x)

∫

U

f(t, x,mt, u)ξ(du|t) + φ(t, x)

∫

U

g(t, x,mt, u)ξ(du|t)

)

mt(dx)dt = 0.

From [2, Theorem 7], it follows that, given µ ∈ M
ρ
1 (R

d) and ξ ∈ Us,r, there exists a unique
solution to (3.2) satisfying the initial condition

ms = µ. (3.3)

We will show later (see Remark 3) that, in this case, mt ∈ M
ρ
1 (R

d).
Now, let us recall an equivalent description of the solution to the nonlocal balance equation.

To this end, we introduce the space of Γρ
s,r that consists of all continuous curves γ(·) = (x(·), w(·))

from [s, r] to R
d × [0, ρ]. If γ(·) = (x(·), w(·)) ∈ Γρ

s,r, then et is an evaluation operator assigning to
a curve γ(·) ∈ Γρ

s,r the vector γ(t) ∈ R
d+1. Furthermore, if η ∈ P1(Γ

ρ
s,r) we let ⌊η⌋t , ⌊et♯η⌋. This

means that ⌊η⌋t is a measure on R
d defined by the rule: for every φ ∈ Cb(R

d),

∫

Rd

φ(x)⌊η⌋t ,

∫

Γρ
s,r

w(t)φ(x(t))η(d(x(·), w(·))).

In [2, Theorem 7] the following variant of the superposition principle was derived.
Proposition 2. A flow of probabilities t 7→ mt ∈ Mρ

1(R
d) is a solution of (3.2) for some relaxed

control ξ ∈ Us,r if and only if, for some C > 0, there exists a probability η ∈ P1(Γ
ρ
s,r) satisfying the

following conditions:

(M1) mt = ⌊η⌋t, t ∈ [s, r];

(M2) η-a.e. curve (x(·), w(·)) solves

d

dt
x(t) =

∫

U

f(t, x(t), ⌊η⌋t, u)ξ(du|t),

d

dt
w(t) =

∫

U

g(t, x(t), ⌊η⌋t , u)ξ(du|t) · w(t).

Moreover, [2, Theorem 6] states that given ν ∈ P1(R
d × [0, ρ]) there exists a unique measure

η ∈ P1(Γ
ρ1
s,r) satisfying the initial condition es♯η = ν whenever ρ1 is sufficiently large.
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Remark 3. Due to Hypothesis (H4), if w(s) ∈ [0, ρ], then, for each t ∈ [s, r], one has that

w(t) ∈
[

0, ρ
]

.

Thus, we always can assume that η satisfying conditions (M1), (M2) is defined on P1(Γ
ρ
s,r). This

gives that, if m· is a solution of (3.2) for some relaxed control ξ ∈ Us,r and the initial measure
µ ∈ M

ρ
1 (R

d), then mt ∈ M
ρ
1 (R

d) for each t ∈ [s, r].

Notice also that, thanks to Hypothesis (H3), if x(s) ∈ BR, then, for each t ∈ [s, r], x(t) ∈ BR.
Therefore, mt ∈ Mρ(BR) provided that supp(µ) ⊂ BR.

In what follows, we denote the solution of (3.2) satisfying (3.3) for the relaxed control ξ by
m·[s, µ, ξ].

Proposition 3. If η ∈ P1(Γ
ρ
s,T ) satisfies condition (M2), then, for each r ∈ [s, T ],

W1(es♯η, er♯η) ≤ C1(r − s).

If, additionally, mt , ⌊η⌋t, then

W1,ρ(ms,mr) ≤ C1(r − s).

Here C1 is a constant.

The first part of the proposition follows directly from condition (M2) and the fact that the functions f
and g are bounded. The second part is a consequence of condition (M1) and Proposition 1.

From now we restrict our attention to the space Mρ(BR). By Remark 3 it is invariant under
controlled dynamics (3.2).

The main result of this section is the following.
Theorem 1. Let

• s, r ∈ [0, T ], s < r;

• for each n ∈ N ∪ {∞}, µn ∈ Mρ(BR), ξ
n ∈ Us,r, m

n
· , m·[s, µ

n, ξn].

Assume that W1,ρ(µ
n, µ∞) → 0 and ξn → ξ∞ as n→ ∞. Then,

sup
t∈[s,r]

W1,ρ(m
n
t ,m

∞
t ) → 0 as n→ ∞.

Proof. For each n ∈ N ∪ {+∞}, we consider the following system of ODE

d

dt
x(t) =

∫

U

f(t, x(t),mn
t , u)ξ

n(du|t),

d

dt
w(t) =

∫

U

g(t, x(t),mn
t , u)ξ

n(du|t) · w(t).

(3.4)

We denote the solution of the first equation in (3.4) with the initial condition x(s) = y by xn(·, y).
Additionally, let wn(·, y, z) denote the solution of the second equation in (3.4) for x(·) = xn(·, y) and
the initial condition w(s) = z. Furthermore, let X n(y, z) assign to (y, z) ∈ R

d+1 the whole trajectory
(xn(·, y), wn(·, y, z)). If νn ∈ P1(BR × [0, ρ]) is s.t. ⌊νn⌋ = µn, ηn , X n♯νn, then ⌊ηn⌋t = mn

t . This
follows from [2, Lemma 8].

For each (y, z) ∈ BR × [0, ρ], we denote by Fi(t, y, z, u) the value fi(t, x
∞(t, y),m∞

t , u). Here, fi
is the i-th coordinate of the function f . Furthermore,

Fd+1(t, y, z, u) , g(t, x∞(t, y),m∞
t , u)w

∞(t, y, z).

Notice that the function Fi, i = 1, . . . , d+ 1 are bounded and Lipschitz continuous on BR × [0, ρ].
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Now, let us choose ε > 0. Due to the Lipschitz continuity of the functions Fi, there exists
a finite number of points {(yεk, z

ε
k)}

Kε

k=1 ⊂ BR × [0, ρ] satisfying the following condition: for each
(y, z) ∈ BR × [0, ρ] there exists a number k ∈ {1, . . . ,Kε} s.t. given i = 1, . . . , d + 1, t ∈ [0, T ],
u ∈ U ,

|Fi(t, y, z, u) − Fi(t, y
ε
k, z

ε
k, u)| ≤ ε. (3.5)

Furthermore, the boundedness of the functions Fi gives that there exists a partition of the time
interval [s, r] {tεi}

Iε
i=0 s.t., for every t ∈ [tεi , t

ε
i+1], i = 0, . . . , Iε − 1,

|Fi(t, y, z, u) − Fi(t
ε
i , y, z, u))| ≤ ε, (3.6)

whenever (y, z) ∈ BR × [0, ρ], u ∈ U .
For each n, let νn and ν∞,n be probabilities from P1(BR × [0, ρ]) s.t.

• ⌊νn⌋ = µn;

• ⌊ν∞,n⌋ = µ∞;

• W1,ρ(µ
n, µ∞) + ε ≥W1(ν

n, ν∞,n).

Finally, we denote by πn an optimal plan between νn and ν∞,n.

As we mentioned above, there exist distributions of curves ηn, η∞,n ∈ P1(Γ
ρ
s,r) s.t. ηn = X n♯νn,

η∞,n = X∞♯ν∞,n. Moreover, mn
t = ⌊ηn⌋t, m

∞
t = ⌊η∞,n⌋t. Thus,

W1,ρ(m
n
t ,m

∞
t ) ≤W1(et♯η

n, et♯η
∞,n). (3.7)

Let N be s.t. for each n ≥ N one has that

W1,ρ(µ
n, µ∞) ≤ ε. (3.8)

∣

∣

∣

∣

tεi
∫

s

∫

U

Fi(τ, y
ε
k, z

ε
k, u)ξ

n(du|τ)dτ −

tεi
∫

s

∫

U

Fi(τ, y
ε
k, z

ε
k, u)ξ

∞(du|τ)dτ

∣

∣

∣

∣

≤ ε (3.9)

whenever i ∈ 0, . . . , Iε − 1, k ∈ 1, . . . Kε. Such an N exists because ξn converges narrowly to ξ∞.
From Hypothesis (H6), we have that, for each (yn, zn), (y∞, z∞) ∈ BR × [0, ρ],

|xn(t, yn)− x∞(t, y∞)| ≤ |yn − y∞|

+ C1
f

t
∫

s

(

|xn(τ, yn)− x∞(τ, y∞)|+W1,ρ(m
n
τ ,m

∞
τ )

)

dτ

+

d
∑

i=1

∣

∣

∣

∣

t
∫

s

∫

U

F 0
i (τ, y

∞, z∞, u)(ξn(du|t) − ξ∞(du|t))dt

∣

∣

∣

∣

.

Similarly, thanks to Hypotheses (H4), (H6), we obtain the estimate:

|wn(t, yn, zn)− w∞(t, y∞, z∞)| ≤ |zn − z∞|

+

t
∫

s

(

C0
g |w

n(τ, yn, zn)− w∞(τ, y∞, z∞)|+ C1
g |x

n(τ, yn)− x∞(τ, y∞)|
)

dτ

+

t
∫

s

W1,ρ(m
n
τ ,m

∞
τ )dτ +

∣

∣

∣

∣

t
∫

s

∫

U

F 0
d+1(τ, y

∞, z∞, u)(ξn(du|t)− ξ∞(du|t))dt

∣

∣

∣

∣

.
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Hence, from Gronwall’s inequality,

|xn(t, yn)− x∞(t, y∞)|+ |wn(t, yn, zn)− w∞(t, y∞, z∞)| ≤ C ′
0

(

|yn − y∞|+ |zn − z∞|
)

+ C ′
1

t
∫

s

W1,ρ(m
n
τ ,m

∞
τ )dτ + C ′

1

d+1
∑

i=1

∣

∣

∣

∣

t
∫

s

∫

U

F 0
i (τ, y

∞, z∞, u)(ξn(du|t)− ξ∞(du|t))dt

∣

∣

∣

∣

.

Here C ′
0, C

′
1 are some constants.

From now on, we assume that n ≥ N , where N is chosen according to (3.9). Take additionally
into account the choice of points (yεk, z

ε
k) (see (3.5)) and times tεa (see (3.6)), we conclude that

∣

∣

∣

∣

t
∫

s

∫

U

F 0
i (τ, y

∞, z∞, u)(ξn(du|t) − ξ∞(du|t))dt

∣

∣

∣

∣

≤ 5ε.

Thus,

|xn(t, yn)− x∞(t, y∞)|+ |wn(t, yn, zn)− w∞(t, y∞, z∞)|

≤ C ′
0

(

|yn − y∞|+ |zn − z∞|
)

+C ′
1

t
∫

s

W1,ρ(m
n
τ ,m

∞
τ )dτ + C ′

2ε.

Here, C ′
2 = C ′

15(d+ 1).

Integrating the latter inequality w.r.t. πn and using the definition of ηn and η∞,n, we conclude
that

W1(et♯η
n, et♯η

∞,n) ≤ C ′
0W1(ν

n, ν∞,n) + C ′
1

t
∫

s

W1,ρ(m
n
τ ,m

∞
τ )dτ + C ′

2ε.

Now, let us use (3.7), (3.8) and the fact that W1(ν
n, ν∞,n) ≤ W1,ρ(µ

n, µ∞) + ε. Thus,

W1,ρ(m
n
t ,m

∞
t ) ≤ C ′

1

t
∫

s

W1,ρ(m
n
τ ,m

∞
τ )dτ +

(

C ′
2 + 2C ′

0)ε.

Using Gronwall’s inequality once again, we conclude that, for every n ≥ N , whereN satisfies (3.8), (3.9),

W1,ρ(m
n
t ,m

∞
t ) ≤ C ′

3ε,

where C ′
3 is a constant that does not depend on n. This gives the desired convergence. �

Corollary 1. If µ ∈ Mρ(BR), then there exists an optimal relaxed control for optimal control

problem (1.1), (1.2), i.e., a relaxed control ξ∗ s.t., for every ξ ∈ Us,r,

G(mT [s, µ, ξ
∗]) +

T
∫

s

∫

U

L(t,mt[s, µ, ξ
∗])ξ∗(du|t)dt ≤ G(mT [s, µ, ξ]) +

T
∫

s

∫

U

L(t,mt[s, µ, ξ])ξ(du|t)dt.

This statement directly follows from the compactness of Us,T , the continuous dependence ofm·[s, µ, ξ]
on the relaxed control ξ (see Theorem 1) and the continuity of the functions L and G in the
metric W1,ρ. The latter is a consequence of Hypotheses (H6), (H7) and inequality (2.3).
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4. Value function and dynamic programming principle

We introduce the value function as follows. First, if s ∈ [0, T ], µ ∈ Mρ(BR), ξ ∈ Us,T , we put

J [s, µ, ξ] , G(mT [s, µ, ξ]) +

T
∫

s

∫

U

L(t,mt[s, µ, ξ])ξ(du|t)dt.

Furthermore,

Val(s, µ) , max
{

J [s, µ, ξ] : ξ ∈ Us,T

}

Due to Corollary 1, this definition is correct. Below we consider on Mρ(BR) the metric W1,ρ.

Proposition 4. The function Val is continuous on [0, T ]×Mρ(BR).

Proof. First, notice that inequality (2.3) and the assumptions imply that the functions L and
G are continuous w.r.t. the metric W1,ρ. The fact that µ 7→ Val(s, µ) is continuous w.r.t. the metric
W1,ρ follows from this and Theorem 1. Proposition 3 give the continuity w.r.t. the time variable. �

Now let us establish the dynamic programming principle.
Theorem 2. Let s ∈ [0, T ], µ ∈ Mρ(BR), r ∈ (s, T ]. Then,

Val(s, µ) = min

{

Val(r,mr[s, µ, ξ]) +

r
∫

s

∫

U

L(t,mt[s, µ, ξ], u)ξ(du|t)dt : ξ ∈ Us,r

}

.

Proof. Notice that given ξ1 ∈ Us,r, ξ2 ∈ Ur,T , one can define the concatenation of these relaxed
controls using their disintegration

(ξ1 ⋄r ξ2)(·|t) ,

{

ξ1(·|t), t ∈ [s, r),

ξ2(·|t), t ∈ [r, T ].

Moreover,

Val(s, µ) = min
ξ∈Ur,T

[

G(mT [s, µ, ξ]) +

T
∫

r

∫

U

L(t,mt[s, µ, ξ], u)ξ(t|du)dt

+

r
∫

s

∫

U

L(t,mt[s, µ, ξ], u)ξ(du|t)dt

]

.

Notice that each relaxed control ξ ∈ Us,T can be expressed in the form ξ = ξ′ ⋄r ξ
′′, where ξ′

(respectively, ξ′′) is the restriction of the relaxed control ξ on [s, r] (respectively, [r, T ]). Thus,

Val(s, µ) ≥ min

{

Val(r,mr[s, µ, ξ]) +

r
∫

s

∫

U

L(t,mt[s, µ, ξ], u)ξ(du|t)dt : ξ ∈ Us,r

}

.

To derive the converse inequality, we first choose a control ξ1 ∈ Us,r s.t.

Val(r,mr[s, µ, ξ1]) +

r
∫

s

∫

U

L(t,mt[s, µ, ξ1], u)ξ1(du|t)dt

= min

{

Val(r,mr[s, µ, ξ]) +

r
∫

s

∫

U

L(t,mt[s, µ, ξ], u)ξ(du|t)dt : ξ ∈ Us,r

}

.
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The existence of such a control follows from Corollary 1. Furthermore, we choose ξ2 ∈ Ur,T satisfying

Val(r, µ′) = G(mT [r, µ
′, ξ2]) +

T
∫

r

∫

U

L(t,mt[r, µ
′, ξ2], u)ξ2(t|du)dt

where µ′ , mr[s, µ, ξ1]. Letting ξ̂ , ξ1 ⋄r ξ2, and taking into account the fact that

mt[s, µ, ξ̂] =

{

mt[s, µ, ξ1], t ∈ [s, r],

mt[r, µ
′, ξ2], t ∈ [r, T ],

we conclude that

G(mT [s, µ, ξ̂]) +

T
∫

r

∫

U

L(t,mt[s, µ, ξ̂], u)ξ̂(t|du)dt

= G(mT [r, µ
′, ξ2]) +

T
∫

r

∫

U

L(t,mt[r, µ
′, ξ2], u)ξ2(t|du)dt +

r
∫

s

∫

U

L(t,mt[s, µ, ξ1], u)ξ1(t|du)dt

= min

{

Val(r,mr[s, µ, ξ]) +

r
∫

s

∫

U

L(t,mt[s, µ, ξ], u)ξ(du|t)dt : ξ ∈ Us,r

}

.

Therefore,

Val(s, µ) ≤ min

{

Val(r,mr[s, µ, ξ]) +

r
∫

s

∫

U

L(t,mt[s, µ, ξ], u)ξ(du|t)dt : ξ ∈ Us,r

}

. �

5. Viscosity solution of the Hamilton–Jacobi equations

In this section, we give the infinitesimal characterization of the value function. It states that
a value function is a viscosity solution of a corresponding Hamilton–Jacobi equation in the space
of non-negative measures. To this end, we first introduce some concept of nonsmooth analysis
on M1(R

d). First, we recall the following operation proposed in [3]. For a measure µ ∈ M1(R
d), a

function (ξ, ζ) ∈ L1(Rd, µ;Rd×R) s.t. ζ is µ-essentially bounded and a number τ > 0, Θτ
µ[ξ, ζ] ∈ M1(µ)

is defined by the rule: if φ ∈ Cb(R
d),

∫

Rd

φ(x)Θτ
µ[ξ, ζ](dx) ,

∫

Rd

φ(z + τξ(z)) exp
[

τζ(z)
]

µ(dz).

Below, we will consider only µ ∈ Mρ(BR). Additionally, for µ ∈ Mρ(BR), we put

Ξ(µ) ,
{

(ξ, ζ) ∈ L1(Rd, µ;Rd ×R) : ξ(x) = 0 for x /∈ BR, ζ(x) ∈ [−C0
g , 0] for x ∈ R

d
}

.

We will consider on Ξ(µ) the topology inherited from the standard L1-space. Notice that, for each
µ ∈ Mρ(BR), (ξ, ζ) ∈ Ξ(µ) and τ > 0, Θτ

µ(ξ, ζ) ∈ Mρ(BR).

The constructions of the nonsmooth analysis presented below may depend on parameters R and ρ.
However, we do not indicate this dependence.

In what follows, we fix a function φ : Mρ(BR) → R, s ∈ [0, T ] and a measure µ ∈ M1(R
d).
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Definition 3. Let α ∈ R, (ξ, ζ) ∈ Ξ(µ), then the lower directional derivative is defined by the
rule:

d−Dφ(s, µ;α, ξ, ζ) , lim inf
h↓0,α′→α,

(ξ′,ζ′)∈Ξ(µ), (ξ′,ζ′)→(ξ,ζ)

φ(s+ hα′,Θh
µ[ξ, ζ])− φ(s, µ)

h
.

The upper directional derivative is defined similarly:

d+Dφ(s, µ;α, ξ, ζ) , lim sup
h↓0,α′→α,

(ξ′,ζ′)∈Ξ(µ), (ξ′,ζ′)→(ξ,ζ)

φ(s+ hα′,Θh
µ[ξ, ζ])− φ(s, µ)

h
.

Definition 4. The directional subdifferential of the function φ at (s, µ) contains all triples
(a, p, q), where a ∈ R, (p, q) ∈ L∞(Rd, µ;Rd+1,∗) s.t., for each α ∈ R and (ξ, ζ) ∈ Ξ(µ),

aα+

∫

Rd

[

p(x)ξ(x) + q(x)ζ(x)
]

µ(dx) ≤ d−Dφ(s, µ;α, ξ, ζ).

The directional subdifferential of the function φ at µ is denoted by ∂−Dφ(s, µ).

Similarly, the directional superdifferential of the function φ at (s, µ) is denoted by ∂+Dφ(s, µ)
and consists of all triples (a, p, q), where a ∈ R, (p, q) ∈ L∞(Rd, µ;Rd+1,∗) satisfying the following
condition: if α ∈ R, (ξ, ζ) ∈ Ξ(µ),

aα+

∫

Rd

[

p(x)ξ(x) + q(x)ζ(x)
]

µ(dx) ≥ d+Dφ(s, µ;α, ξ, ζ).

The Hamiltonian for the examined control problem is defined by the rule: for s ∈ [0, T ], µ ∈ M1(R
d),

(p, q) ∈ L∞(Rd, µ;Rd+1,∗),

H(s, µ, p, q) , min
u∈U

[
∫

Rd

(

p(x)f(s, x, µ, u) + q(x)g(s, x, µ, u)
)

µ(dx) + L(s, µ, u)

]

.

We consider the following Hamilton–Jacobi equation.

∂tϕ+H(t, µ,∇ϕ) = 0. (5.1)

This is a formal equation, where we assume that t ∈ [0, T ], µ ∈ Mρ(BR), ∇φ is a function from
L∞(Rd, µ;Rd+1,∗). We will interpret this equation in the viscosity sense following approach of [6;27].

Definition 5. We say that a function ϕ : [0, T ]×Mρ(BR) is a viscosity supersolution to (5.1)
provided that

a+H(s, µ, a, p, q) ≤ 0

whenever (a, p, q) ∈ ∂−Dϕ(s, µ).

A function ϕ : [0, T ]×Mρ(BR) is a viscosity subsolution to (5.1) if

a+H(s, µ, a, p, q) ≥ 0

for each (a, p, q) ∈ ∂+Dϕ(s, µ).

We say that a function ϕ : [0, T ] ×Mρ(BR) is a viscosity solution of (5.1) if it is a super- and
subsolution simultaneously.

The main result of this section is as follows.
Theorem 3. The value function of optimal control problem (1.1), (1.2) on [0, T ]×Mρ(BR) is

a viscosity solution of (5.1).
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First, we need the following auxiliary statement.
Lemma 1. Let

• s ∈ [0, T ], µ ∈ Mρ(BR);

• {hn}
∞
n=1 be a sequence of positive numbers converging to zero;

• for each n, ξ(n) ∈ Us,s+hn
; ζ(n) be a time-averaging of ξ(n) over the interval [s, s+ hn] defined

for each φ ∈ C(U) by the rule:

∫

U

φ(u)ζ(n)(du) ,
1

hn

∫

[s,r]×U

φ(u)ξ(n)(d(t, u));

• for each n,

v(n)(y) ,
1

hn

∫

[s,s+hn]×U

f(t,Xs,t
(n)(y),m[t, s, µ], u)ξn(d(t, u)), (5.2)

b(n)(y) ,
1

hn

∫

[s,s+hn]×U

g(t,Xs,t
(n)(y),m[t, s, µ], u)ξn(d(t, u)), (5.3)

where t 7→ Xs,t
(n)(y) stands for the solution map for the initial value problem

d

dt
x(t) =

∫

U

f(t, x(t),m·[s, µ, ξn], u)ξ(n)(du|t), x(t) = y.

Assume that ζ(n) → ζ as n→ ∞ and put

v(y) =

∫

U

f(t, y, µ, u)ζ(du), (5.4)

b(y) =

∫

U

g(t, y, µ, u)ζ(du). (5.5)

Then, (v(n), b(n)), (v, b) ∈ Ξ(µ) and (v(n), b(n)) → (v, b) as n→ ∞.

Proof. First, notice that, due to Hypothesis (H2), the functions v(n), v are bounded; moreover,
b(n), b take values in [−C0

g , 0] (this is due to Hypothesis (H4)). Hypotheses (H3) implies that v(n)
and v are equal to zero outside the ball BR. Thus, (v(n), b(n)), (v, b) ∈ Ξ(µ).

Now let us prove that v(n) → v pointwise. Indeed, recall that W1,b(mt[s, µ, ξ(n)], µ) ≤ C2|t− s|

(see Proposition 3). Similarly, notice that |Xs,t
(n)(y)− y| ≤ C ′′

1 |t− s|, where C ′′
1 is a constant. Thus,

for each y ∈ R
d, we have that

‖v(n)(y)− v(y)‖ ≤

∣

∣

∣

∣

∫

U

f(s, y, µ, u)ζ(n)(du)−

∫

U

f(s, y, µ, u)ζ(du)

∣

∣

∣

∣

+
1

hn

∣

∣

∣

∣

∫

[s,s+hn]×U

f(t, y, µ, u)ξ(n)(d(t, u)) −

∫

[s,s+hn]×U

f(s, y, µ, u)ξ(n)(d(t, u))

∣

∣

∣

∣

+ C1
f (C2 + C ′′

1 )hn.

Using the uniform continuity of the function f w.r.t. the time variable and the fact that ζ(n) → ζ
narrowly, we prove that v(n) → v pointwise.

The fact that b(n) → b pointwise is proved analogously.
Since the functions (v(n), b(n)) are uniformly bounded, we have that (v(n), b(n)) → (v, b) in the

L1-sense. �
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Proof of Theorem 3. First, we prove that Val is a viscosity supersolution to (5.1). To this
end, we fix s ∈ [0, T ], µ ∈ Mρ(BR) and (a, p, q) ∈ ∂−D Val(s, µ). Now, let τ > 0. Due to the dynamic
programming principle, there exists a relaxed control ξh ∈ Us,s+h s.t.

Val(s, µ) = Val(s+ h,ms+h[s, µ, ξh]) +

s+h
∫

s

∫

U

L(t,mt[s, µ, ξh], u)ξh(du|t). (5.6)

As above, let t 7→ Xs,t
h (y) denote a solution map for the initial value problem

d

dt
x(t) =

∫

U

f(t, x(t),mt[s, µ, ξh], u)ξh(du|t), x(t) = y.

We put

vh(y) ,
1

h

∫

[s,s+hn]×U

f(t,Xs,t
h (y),mt[s, µ, ξ̂h], t)ξh(d(u, t)),

bh(y) ,
1

h

∫

[s,s+hn]×U

g(t,Xs,t
h (y),mt[s, µ, ξh], t)ξh(d(u, t)).

Now we define the averaging of the measure ξh over [s, s+ h] by the rule: for φ ∈ C(U),
∫

U

φ(u)ζh(du) ,
1

h

∫

[s,s+h]×U

φ(u)ξh(d(t, u)).

Notice that, due to the compactness of P(U) (this is a consequence of the celebrated Prokhorov
theorem) there exists a sequence {hn}

∞
n=1 ⊂ (0,+∞) s.t.

• hn → 0 as n→ ∞;

• ζ(n) , ζhn
converges narrowly to some ζ ∈ P(U).

In what follows, we put ξ(n) , ξhn
, v(n) , vhn

, b(n) , vhn
. By Proposition 1, (v(n), b(n)) converge to

(v, b), where

v(y) ,

∫

U

f(s, y, µ, u)ζ(du), b(y) ,

∫

U

g(s, y, µ, u)ζ(du).

Furthermore,
ms+h[s, µ, ξh] = Θh

µ(vh, bh). (5.7)

Finally, from the very definition of the measures ζ(n), the fact that the sequence {ζ(n)}
∞
n=1 converges

narrowly to ζ, Proposition 3 and Hypothesis (H5), (H6), we obtain that

∣

∣

∣

∣

s+hn
∫

s

∫

U

L(t,mt[s, µ, ξ(n)], u)ξ(n)(du|t)dt− hn

∫

U

L(s, µ, u)ζ(du|t)

∣

∣

∣

∣

≤ hnςn,

where ςn → 0 as n→ ∞. Thus, from (5.6), (5.7), it follows that, for each n,

hnσn ≥ Val(s+ hn,Θ
h
µ(v(n), b(n)))−Val(s, µ) + hn

∫

U

L(s, µ, u)ζ(du).

Recall that, by the definition of the lower directional derivative,

lim inf
n→∞

Val(s+ hn,Θ
h
µ(v(n), b(n)))−Val(s, µ)

hn
≥ d−D Val(s, µ; 1, v, b).
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Since (a, p, q) ∈ ∂−D Val(s, µ),

0 ≥ lim inf
n→∞

Val(s+ hn,Θ
h
µ(v(n), b(n)))−Val(s, µ)

hn
+

∫

U

L(s, µ, u)ζ(du)

≥ a+

∫

Rd

[

p(y)v(y) + q(y)b(y)
]

µ(dy) +

∫

U

L(s, µ, u)ζ(du)

= a+

∫

U

[
∫

Rd

(

p(y)f(s, y, µ, u) + q(y)g(s, y, µ, u)
)

µ(dy) + L(s, µ, u)

]

ζ(du).

In the last step, we used the definition of the functions v, b and applied the Tonelli theorem.
Since, for each u ∈ U ,

∫

Rd

(

p(y)f(s, y, µ, u) + q(y)g(s, y, µ, u)
)

µ(dy) + L(s, µ, u) ≥ H(s, µ, p, q),

we conclude that Val is a viscosity supersolution to (5.1).
To prove the fact that Val is a viscosity subsolution to (5.1), we fix s ∈ [0, T ], µ ∈ Mρ(BR) and

(a, p, q) ∈ ∂+D Val(s, µ). There exists ū s.t.
∫

Rd

(

p(y)f(s, y, µ, ū) + q(y)g(s, y, µ, ū)
)

µ(dy) + L(s, µ, ū) = H(s, µ, p, q). (5.8)

Let ζ̄ , δū and let ξ̄ be a constant relaxed control s.t. ξ̄(·|t) , ζ̄(·) = δū(·). Furthermore, let
{hn}

∞
n=1 ⊂ (0,+∞) converge to 0. Now we use notation (5.2)–(5.5) for ξ(n) , ξ̄, ζ(n) = ζ̄, ζ = ζ̄. In

this case, Proposition 1 gives that (v(n), b(n)) converge to (v, b). Furthermore, notice that

ms+hn
[s, µ, ξ̄] = Θhn

µ (v(n), b(n)).

Hence, the dynamic programming principle (see Theorem 2) gives that

Val(s, µ) ≤ Val(s+ hn,Θ
hn
µ (v(n), b(n))) +

s+hn
∫

s

L(t,mt[s, µ, ξ̄], ū)dt. (5.9)

As above, from Proposition 3 and Hypothesis (H5), (H6), it follows that, if t ∈ [s, s + hn],
∣

∣L(t,mt[s, µ, ξ̄], ū)dt− L(s, µ, ū)
∣

∣ ≤ ς ′n,

where ς ′n → 0 as n→ ∞. Therefore, thanks to (5.9), we conclude that

−hnς
′
n ≤ Val(s+ hn,Θ

hn
µ (v(n), b(n)))−Val(s, µ) + hnL(s, µ, ū). (5.10)

Recall that (see Definitions 3, 4) that

lim sup
n→∞

Val(s+ hn,Θ
hn
µ (v(n), b(n)))−Val(s, µ)

hn

≤ d+D Val(s, µ; 1, v, b) ≤ a+

∫

Rd

[

p(y)v(y) + q(q)b(y)
]

µ(dy).

This and (5.10) imply that

0 ≤

∫

Rd

(

p(y)f(s, y, µ, ū) + q(y)g(s, y, µ, ū)
)

µ(dy) + L(s, µ, ū).

Taking into account the choice of the control ū (see (5.8)), we derive the fact that Val is a viscosity
subsolution to (5.1). �
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2018, pp. 137–165. https://doi.org/10.1007/978-3-030-05129-7_6

24. Piccoli B., Rossi F., Tournus M. A Wasserstein norm for signed measures, with application to nonlocal

transport equation with source term, 2019, 26 p. https://doi.org/10.48550/arXiv.1910.05105

25. Pogodaev N.I., Staritsyn M.V. Nonlocal balance equations with parameters in the space of signed
measures. Mat. Sb., 2022, vol. 213, no. 1, pp. 63–87. https://doi.org/10.1070/SM9516

26. Pogodaev N.I., Staritsyn M.V. optimal control of nonlocal balance equations in the space of nonnegative
measures. Sib. Math. J., 2025, vol. 66, pp. 576–593. https://doi.org/10.1134/S0037446625020223

27. Subbotin A.I. Generalized solutions of first-order PDEs: the dynamical optimization perspective,
Ser. Systems & Control: Foundations & Applications (SCFA), Boston, Birkhäuser, 1994, 314 p.
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